高中數學教案設計
發表時間:2025-05-20高中數學教案設計(錦集二十篇)。
作為一位杰出的教職工,很有必要精心設計一份教學設計,教學設計一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環節。教學設計要怎么寫呢?以下是小編整理的高中數學教學設計,僅供參考,希望能夠幫助到大家。
高中數學教案設計 篇1
一、教學目標
1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關系的學習,培養學生邏輯推理能力
4、初步培養學生反證法的數學思維。
二、教學分析
重點:四種命題;難點:四種命題的關系
1、本小節首先從初中數學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。
2、教學時,要注意控制教學要求。本小節的內容,只涉及比較簡單的命題,不研究含有邏輯聯結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。
三、教學手段和方法(演示教學法和循序漸進導入法)
1、以故事形式入題
2、多媒體演示
四、教學過程
(一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數學思想嗎?通過這節課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!
設計意圖:創設情景,激發學生學習興趣
(二)復習提問:
1.命題“同位角相等,兩直線平行”的條件與結論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學生活動:
口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.
設計意圖: 通過復習舊知識,打下學習否命題、逆否命題的基礎.
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學生歸納什么是否命題,什么是逆否命題。
例1及例2
(五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學生活動:
討論后回答
這兩個逆否命題都真.
原命題真,逆否命題也真
引導學生討論原命題的真假與其他三種命題的真
假有什么關系?舉例加以說明,同學們踴躍發言。
(六)課堂小結:
1、一般地,用p和q分別表示原命題的條件和結論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結論)
否命題,若¬p則¬q;(同時否定原命題的條件和結論)
逆否命題若¬q則¬p。(交換原命題的條件和結論,并且同時否定)
2、四種命題的關系
(1).原命題為真,它的逆命題不一定為真.
(2).原命題為真,它的否命題不一定為真.
(3).原命題為真,它的逆否命題一定為真
(七)回扣引入
分析引入中的笑話,先討論,后總結:現在我們來分析一下主人說的四句話:
第一句:“該來的沒來”
其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
同學們,生活中處處是數學,期待我們善于發現的眼睛。
高中數學教案設計 篇2
教學目標:
1.結合實際問題情景,理解分層抽樣的必要性和重要性;
2.學會用分層抽樣的方法從總體中抽取樣本;
3.并對簡單隨機抽樣、系統抽樣及分層抽樣方法進行比較,揭示其相互關系.
教學重點:
通過實例理解分層抽樣的方法.
教學難點:
分層抽樣的步驟.
教學過程:
一、問題情境
1.復習簡單隨機抽樣、系統抽樣的概念、特征以及適用范圍.
2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學生活動
能否用簡單隨機抽樣或系統抽樣進行抽樣,為什么?
指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.
由于樣本的容量與總體的個體數的比為100∶2500=1∶25,
所以在各年級抽取的個體數依次是x,x,x,即40,32,28.
三、建構數學
1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.
說明:①分層抽樣時,由于各部分抽取的個體數與這一部分個體數的比等于樣本容量與總體的個體數的比,每一個個體被抽到的可能性都是相等的;
②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用.
2.三種抽樣方法對照表:
類別
共同點
各自特點
相互聯系
適用范圍
簡單隨機抽樣
抽樣過程中每個個體被抽取的概率是相同的
從總體中逐個抽取
總體中的個體數較少
系統抽樣
將總體均分成幾個部分,按事先確定的規則在各部分抽取
在第一部分抽樣時采用簡單隨機抽樣
總體中的個體數較多
分層抽樣
將總體分成幾層,分層進行抽取
各層抽樣時采用簡單隨機抽樣或系統
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
(1)分層:將總體按某種特征分成若干部分.
(2)確定比例:計算各層的個體數與總體的個體數的比.
(3)確定各層應抽取的樣本容量.
(4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統抽樣的方法抽?。?,綜合每層抽樣,組成樣本.
四、數學運用
1.例題.
例1(1)分層抽樣中,在每一層進行抽樣可用_________________.
(2)①教育局督學組到學校檢查工作,臨時在每個班各抽調2人參加座談;
②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現欲從中抽出8人研討進一步改進教和學;
③某班元旦聚會,要產生兩名“幸運者”.
對這三件事,合適的抽樣方法為( )
A.分層抽樣,分層抽樣,簡單隨機抽樣
B.系統抽樣,系統抽樣,簡單隨機抽樣
C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣
D.系統抽樣,分層抽樣,簡單隨機抽樣
例2某電視臺在因特網上就觀眾對某一節目的喜愛程度進行調查,參加調查的總人數為12000人,其中持各種態度的人數如表中所示:
很喜愛
喜愛
一般
不喜愛
2435
4567
3926
1072
電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調查,應怎樣進行抽樣?
解:抽取人數與總的比是60∶12000=1∶200,
則各層抽取的人數依次是12.175,22.835,19.63,5.36,
取近似值得各層人數分別是12,23,20,5.
然后在各層用簡單隨機抽樣方法抽?。?/p>
答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人
數分別為12,23,20,5.
說明:各層的抽取數之和應等于樣本容量,對于不能取整數的情況,取其近似值.
(3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務公開方面的某意見,擬抽取一個容量為20的樣本.
分析:(1)總體容量較小,用抽簽法或隨機數表法都很方便.
(2)總體容量較大,用抽簽法或隨機數表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數相同,可用系統抽樣.
(3)由于學校各類人員對這一問題的看法可能差異較大,所以應采用分層抽樣方法.
五、要點歸納與方法小結
本節課學習了以下內容:
1.分層抽樣的'概念與特征;
2.三種抽樣方法相互之間的區別與聯系.
高中數學教案設計 篇3
重點難點教學:
1、正確理解映射的概念;
2、函數相等的兩個條件;
3、求函數的定義域和值域。
教學過程:
1、使學生熟練掌握函數的概念和映射的定義;
2、使學生能夠根據已知條件求出函數的定義域和值域;
3、使學生掌握函數的三種表示方法。
教學內容:
1、函數的定義
設A、若B是兩個非空的數集,根據某種確定的對應關系f,對于集合A中的任意一個數x,在集合B中都有唯一確定的數y與之對應,那么稱f為從集合A到集合B的一個函數,記作y=f(x)。在此,x稱為自變量,x的取值范圍A稱為定義域,與x值相對應的y值稱為函數值,函數值的集合{f(x)|x∈A}稱為值域。顯然,值域是集合B的'子集。
注意:
① “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x。
2、構成函數的三要素定義域、對應關系和值域。
3、映射的定義
設A、若A和B是兩個非空集合,根據某一確定的對應法則f,使得對于集合A中的每一個元素x,在集合B中都有唯一確定的元素y與其對應,則稱此對應法則f:A→B為從集合A到集合B的一個映射。
4、區間及寫法:
設a、b是兩個實數,且a
(1)滿足不等式axb?的實數x的集合叫做閉區間,表示為(a,b);
(2)滿足不等式axb?的實數x的集合叫做開區間,表示為(a,b);
5、函數的三種表示方法
①解析法
②列表法
③圖像法
高中數學教案設計 篇4
一、教學目標
1.知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學生的空間想象力
2.過程與方法
主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態度與價值觀
(1)提高學生空間想象力
(2)體會三視圖的作用
二、教學重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學法與教學用具
1.學法:觀察、動手實踐、討論、類比
2.教學用具:實物模型、三角板
四、教學思路
(一)創設情景,揭開課題
“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。
在初中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實踐動手作圖
1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;
2.教師引導學生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。
作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉化。
(1)投影出示圖片(課本P10,圖1.2-3)
請同學們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發表對上述問題的看法。
4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。
(三)鞏固練習
課本P12練習1、2P18習題1.2A組1
(四)歸納整理
請學生回顧發表如何作好空間幾何體的三視圖
(五)課外練習
1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
高中數學教案設計 篇5
一、教學目標
1、知識目標:理解對數的概念,了解對數與指數的關系;掌握對數式與指數式的相互轉換;理解對數的運算性質,形成知識技能;
2、能力目標:通過實例讓學生認識對數的模型,讓學生有能力去解決今后有關于對數的問題,同時讓學生學會觀察和動手,通過做練習,使學生感受到理論與實踐的統一,鍛煉學生的動手能力;
3、分析目標:通過讓學生分組進行探究活動,在探究中分析各種思維的技巧,掌握對數運算的重要性質。
二、教學理念
為了調動學生學習的積極性,使學生化被動為主動,從學習中體會快樂。本節課我引導學生從實例出發,引發學生的思考,從中認識對數的模型,體會對數的必要性。在教學重難點上,我步步設問、啟發學生的思維,通過課堂練習、探究活動,學生討論的方式來加深理解,很好地突破難點和提高教學效率。讓學生在教師的引導下,充分地動手、動口、動腦,掌握學習的主動權。
三、教法學法分析
1、教法分析
新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的`積極性、主動性。本著這一原則,在教學過程中我主要采用以下教法:實例引入法、開放式探究法、啟發式引導法。
2、學法分析
“授人以魚,不如授人以漁”,最有價值的知識是關于方法的知識。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:觀察發現法、小組討論法、歸納總結法。
四、教材分析
本節講對數的概念和運算性質主要是為后面學習對數函數做準備。這在解決一些日常生活問題及科研中起著十分重要的作用。同時,通過對數概念的學習,對培養學生對立統一、相互聯系、相互轉化的思想,培養學生的邏輯思維能力都具有重要的意義。
五、教學重點與難點
重點 :
對數的定義;
故可以設
m?am,n?an
那么 mn?am?n
由對數的定義可以得到
logam?m,logan?n, logam?n?m?n
將m和n分別帶入,那么可以得到如下結論: logam?n?logam?logan
可以以此為例,讓學生在課堂上推導出如下運算性質的另外兩個公式: 對數運算性質:
如果a?0,且a?1,m?0,n?0,那么:
(1)logam?n?logam?logan
(2)loga m
logamlogan n
(3)logamn?nlogam(n?r) 6. 引入實例,加深對公式的理解
例2.求下列各式的值
(1)log2(47?25);
(2)lg;
解:(1) log 4 7 ? (2) lg2 5)2(
log247log2257log245log227251 19
lg1025 25
高中數學教案設計 篇6
提出問題:
新課程認為知識不是單方面通過教師傳授得到的,而是學生在一定的情境中,運用已有的學習經驗,并通過與他人(教師指導和同學的幫助)協作,主動建構而獲得的。它強調以學生為中心,視學生為認知的主體,教師只對學生的意義建構起幫助和促進作用。通過多年教學實踐和對新課程的認識,我認為若遵循這個原則進行數學課堂教學,學生的學習將是一種高效的活動。
教材中的地位:
本節內容是在指數范圍擴充到實數的基礎上引入指數函數的,而指數函數是高中研究的第一種具體函數。是在初中已經初步探討了正比例函數,反比例函數,一次函數,二次函數的圖像和性質的基礎上,在進一步學習了函數的概念及有關性質的前提下,去研究學習的。重點是指數函數的圖像及性質,難點在于弄清楚底數a對于函數變化的影響。這節課主要是學生利用描點法畫出函數的圖像,并描述出函數的圖像特征,從而指出函數的性質。使學生從形到數的熟悉,體驗研究函數的過程與思路,實現意識的深化。
設計背景:
在新教材的教學中,我慢慢體會到新教材滲透的、螺旋式上升的基本理念,知識點的形成過程經歷從具體的實例引入,形成概念,再次運用于實際問題或具體數學問題的過程,它的應用性,實用性更明顯的體現出來。學數學重在培養學生的思維品質,經過多年的數學學習,學生還是害怕學數學,尤其高中的數學,它對于學生來說顯得很抽象。所以如果再讓讓學生感到數學離我們的生活太遠,那么將很難激發他們的學習愛好。所以在教學中我盡力抓住知識的本質,以實際問題引入新知識。另外,就本章來說,指數函數是學習函數概念及基本性質之后研究的第一個重要的函數,讓學生學會研究一個新的具體函數的方法比學會本身的知識更重要。在這個過程中,所有的知識都是生疏的,在大腦中沒有形成基本的框架結構,需要老師的引導,使他們逐漸建立。數學中任何知識的.形成都體現出它的思想與方法,因而授課中注重讓學生領悟其中的思想,運用其中的方法去學習新的知識,是非常重要的。
教學目標:
一、知識:
理解指數函數的定義,能初步把握指數函數的圖像,性質及其簡單應用。
二、過程與方法:
由實例引入指數函數的概念,利用描點作圖的方法做出指數函數的圖像,(有條件的話借助計算機演示驗證指數函數圖像)由圖像研究指數函數的性質。利用性質解決實際問題。
三、能力:
1、通過指數函數的圖像和性質的研究,培養學生觀察,分析和歸納的能力,進一步體會數形結合的思想方法。
2、通過對指數函數的研究,使學生能把握函數研究的基本方法。
教學過程:
由實際問題引入:
問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,?1個這樣的細胞分裂x次后,得到的細胞的個數y與x之間的關系是什么?
分裂次數與細胞個數
1,2;2,2×2=22;3,2×2×2=23;x,2×2×……×2=2x
歸納:y=2x
問題2:某種放射性物質不斷變化為其它物質,每經過1年剩留的這種物質是原來的84%,那么經過x年后剩留量y與x的關系是什么?
經過1年,剩留量y=1×84%=;經過2年,剩留量y=×=?經過x年,剩留量y=
尋找異同:
你能從以上的兩個例子中得到的關系式里找到什么異同點嗎?
共同點:變量x與y構成函數關系式,是指數的形式,自變量在指數位置,底數是常數;不同點:底數的取值不同。
那么,今天我們來學習新的一個基本函數:指數函數
得到指數函數的定義:定義:形如y=ax(a>0且a≠1)的函數叫做指數函數。
在以前我們學過的函數中,一次函數用形如y=kx+b(k≠0)的形式表示,反比例函數用形如y=k/x(k≠0)表示,二次函數y=ax2+bx+c(a≠0)表示。對于其一
般形式上的系數都有相應的限制。問:為什么指數函數對底數有這樣的要求呢?若a=0,當x>0時,恒等于0,沒有研究價值;當x≤0時,無意義。
若a
若a=1,則=1,是一個常量,也沒有研究的必要。
所以有規定且a>0且a≠1。
由定義,我們可以對指數函數有一初步熟悉。
進一步理解函數的定義:
指數函數的定義域:在我們學過的指數運算中,指數可以是有理數,當指數是無理數時,也是一個確定的實數,對于無理數,學過的有理指數冪的性質和運算法則都適用,所以指數函數的定義域為R。
研究函數的途徑:由函數的圖像的性質,從形與數兩方面研究。
學習函數的一個很重要的目標就是應用,那么首先要對函數作一研究,研究函數的圖像及性質,然后利用其圖像性質去解決數學問題和實際問題。根據以往的經驗,你會從那幾個角度考慮?(圖像的分布范圍,圖像的變化趨勢)圖像的分布情況與函數的定義域,值域有關,函數的變化趨勢體現函數的單調性。引導學生從定義域,值域,單調性,奇偶性,與坐標軸的交點情況著手開始。
首先我們做出指數函數的圖像,我們研究一般性的事物,常用的方法是:由特殊到一般。
我們以具體函數入手,讓學生以小組形式取不同底數的指數函數畫它們的圖像,將學生畫的函數圖像展示,(畫函數的圖像的步驟是:列表,描點,連線。)。最后,老師在黑板(電腦)上演示列表,描點,連線的過程,并且,畫出取不同的值時,函數的圖像。
要求學生描述出指數函數圖像的特征,并試著描述出性質。
數學發展的歷史表明,每一個重要的數學概念的形成和發展,其中都有豐富的經歷,新課程較好的體現了這點。對新課程背景下的學生而言,數學的知識應該是一個數學化的過程,即通過對常識材料進行細致的觀察、思考,借助于分析、比較、綜合、抽象、概括等思維活動,對常識材料進行去粗取精、去偽存真的精加工。該案例正是從數學研究和數學實驗的過程中進行設計。雖然學生的思維不一定真實的重演了人類對數學知識探索的全過程,但確確實實通過實驗、觀察、比較、分析、歸納、抽象、概括等思維活動,在探索中將數學數學化,從而才使學生對數學學習產生了樂趣,對數學的研究方法有了一定的了解。
雖然學生要學的數學是歷史上前人已建構好了的,但對他們而言,仍是全新的、未知的,需要用他們自己的學習活動來再現類似的過程。該案例正是從創設問題情景作為教學設計的重要的內容之一。教師應該把教學設計成學生動手操作、觀察猜想、揭示規律等一系列過程,側重于學生的探索、分析與思考,側重于過程的探究及在此過程中所形成的一般數學能力。
教師的地位應由主導者轉變為引導者,使教學活動真正成為學生的活動。在教學過程中,把學習的主動權交給學生,在時間和空間上保證學生在教師的指導下,學生能自己獨立自主的探究學習。使教學活動始終處于學生的“最近發展區”,使每一個學生通過自己的努力,在自己原有的基礎上都有所獲,都有提高??傊?,通過案例研究,不斷研究新教材、新理念,不斷調整教學策略優化課堂教學,培養學生探究學習與創新學習能力將是我們在數學教學中要繼續探究的課題。
高中數學教案設計 篇7
教學目標:
1.理解流程圖的選擇結構這種基本邏輯結構.
2.能識別和理解簡單的框圖的功能.
3. 能運用三種基本邏輯結構設計流程圖以解決簡單的問題.
教學方法:
1. 通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知.
2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構.
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導學生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構數學
1.選擇結構的概念:
(1)先根據條件作出判斷,再決定執行哪一種
(2)操作的結構稱為選擇結構.
如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執行,否則執行.
2.說明:
(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的設計;
(2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;
(3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執行,但或兩個框中可以有一個是空的,即不執行任何操作;
(4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
高中數學教案設計 篇8
一、指導思想與理論依據
數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。
二、教材分析
三角函數的誘導公式是普通高中課程標準實驗教科書(人教A版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六)。本節是第一課時,教學內容為公式(二)、(三)、(四)。教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角與、終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四)。同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求。為此本節內容在三角函數中占有非常重要的地位。
三、學情分析
本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容。
四、教學目標
(1)基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;
(2)能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;
(3)創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;
(4)個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀。
五、教學重點和難點
1、教學重點
理解并掌握誘導公式。
2、教學難點
正確運用誘導公式,求三角函數值,化簡三角函數式。
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究。下面我從教法、學法、預期效果等三個方面做如下分析。
1、教法
數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質。
在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅。
2、學法
“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情。如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題。
在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習。
3、預期效果
本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題。
七、教學流程設計
(一)創設情景
1、復習銳角300,450,600的三角函數值;
2、復習任意角的三角函數定義;
3、問題:由你能否知道sin2100的值嗎?引如新課。
設計意圖
高中數學優秀教案高中數學教學設計與教學反思
自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法。
(二)新知探究
1、讓學生發現300角的終邊與2100角的終邊之間有什么關系;
2、讓學生發現300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;
3、Sin2100與sin300之間有什么關系。
設計意圖
由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角與的三角函數值的關系做好鋪墊。
(三)問題一般化
探究一
1、探究發現任意角的終邊與的終邊關于原點對稱;
2、探究發現任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;
3、探究發現任意角與的三角函數值的關系。
設計意圖
首先應用單位圓,并以對稱為載體,用聯系的觀點,把單位圓的性質與三角函數聯系起來,數形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數值之間的關系,逐步上升,一氣呵成誘導公式二。同時也為學生將要自主發現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰,敢于前進
(四)練習
利用誘導公式(二),口答下列三角函數值。
喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問題。
(五)問題變形
由sin3000=—sin600出發,用三角的定義引導學生求出sin(—3000),Sin1500值,讓學生聯想若已知sin3000=—sin600,能否求出sin(—3000),Sin1500)的值。學生自主探究
高中數學教案設計 篇9
一、教學目標
【知識與技能】
進一步掌握直線方程的各種形式,會根據條件求直線的方程。
【過程與方法】
在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。
【情感、態度與價值觀】
在學習活動中獲得成功的體驗,增強學習數學的興趣與信心。
二、教學重難點
【重點】根據條件求直線的方程。
【難點】根據條件求直線的方程。
三、教學過程
(一)課堂導入
直接點明最近學習了直線方程的多種形式,這節課將練習求直線的方程。
(二)回顧舊知
帶領學生復習回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。
為了加深學生的.運用和理解,繼續引導學生思考,是否有其他解題思路。預設大部分學生能夠想到用點斜式進行計算。教師肯定學生想法并組織學生動手計算,之后請學生上黑板板演。
預設學生有多種解題方法,如AB、AC所在直線方程用兩點式求解,BC所在直線方程用點斜式求解。
學生板演后教師講解,點明不足,提示學生,計算結束后要記得將所求得方程整理為直線方程的一般式。
師生總結解題思路:求直線所在方程時,若給出兩點坐標,在符合條件的情況下,可直接套用公式,也可利用點斜式進行求解,注意一題多解的情況。
(四)小結作業
小結:學生暢談收獲。
作業:完成課后相應練習題,根據已知條件求直線的方程。
高中數學教案設計 篇10
一、教材分析
本小節選自《普通高中課程標準數學教科書-數學必修(一)》(人教版)第二章基本初等函數(1)2.2.2對數函數及其性質(第一課時),主要內容是學習對數函數的定義、圖象、性質及初步應用。對數函數是繼指數函數之后的又一個重要初等函數,無論從知識或思想方法的角度對數函數與指數函數都有許多類似之處。與指數函數相比,對數函數所涉及的知識更豐富、方法更靈活,能力要求也更高。學習對數函數是對指數函數知識和方法的鞏固、深化和提高,也為解決函數綜合問題及其在實際上的應用奠定良好的基礎。雖然這個內容十分熟悉,但新教材做了一定的改動,如何設計能夠符合新課標理念,是人們十分關注的,正因如此,本人選擇這課題立求某些方面有所突破。
二、學生學習情況分析
剛從初中升入高一的學生,仍保留著初中生許多學習特點,能力發展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數概念十分抽象,又以對數運算為基礎,同時,初中函數教學要求降低,初中生運算能力有所下降,這雙重問題增加了對數函數教學的難度。教師必須認識到這一點,教學中要控制要求的拔高,關注學習過程。
三、設計理念
本節課以建構主義基本理論為指導,以新課標基本理念為依據進行設計的,針對學生的學習背景,對數函數的教學首先要挖掘其知識背景貼近學生實際,其次,激發學生的學習熱情,把學習的主動權交給學生,為他們提供自主探究、合作交流的機會,確實改變學生的學習方式。
四、教學目標
1.通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;
2.能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性與特殊點;
3.通過比較、對照的方法,引導學生結合圖象類比指數函數,探索研究對數函數的性質,培養學生運用函數的觀點解決實際問題。
五、教學重點與難點
重點是掌握對數函數的圖象和性質,難點是底數對對數函數值變化的影響.
六、教學過程設計
教學流程:背景材料→引出課題→函數圖象→函數性質→問題解決→歸納小結
(一)熟悉背景、引入課題
1.讓學生看材料:
材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發現震驚世界,專家發掘西漢辛追遺尸時,形體完整,全身潤澤,皮膚仍有彈性,關節還可以活動,骨質比現在六十歲的正常人還好,是世界上發現的首例歷史悠久的濕尸。大家知道,世界發現的不腐之尸都是在干燥的環境風干而成,譬如沙漠環境,這類干尸雖然肌膚未腐,是因為干燥不利細菌繁殖,但關節和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤的環境中保存二千多年,而且關節可以活動。人們最關注有兩個問題,第一:怎么鑒定尸體的年份?第二:是什么環境使尸體未腐?其中第一個問題與數學有關。
圖4—1 (如圖4—1在長沙馬王堆“沉睡”近2200年的古長沙國丞相夫人辛追,日前奇跡般地“復活”了)那么,考古學家是怎么計算出古長沙國丞相夫人辛追“沉睡”近2200年?上面已經知道考古學家是通過提取尸體的殘留物碳14的'殘留量p,利用t?logp 57302估算尸體出土的年代,不難發現:對每一個碳14的含量的取值,通過這個對應關系,生物死亡年數t都有唯一的值與之對應,從而t是p的函數;
如圖4—2材料2(幻燈):某種細胞分裂時,由1個分裂成2個,2個分裂成4個??,如果要求這種細胞經過多少次分裂,大約可以得到細胞1萬個,10萬個??,不難發現:分裂次數y就是要得到的細胞個數x的函數,即y?log2x;
圖4—2 1.引導學生觀察這些函數的特征:含有對數符號,底數是常數,真數是變量,從而得出對數函數的定義:函數y?logax(a?0,且a?1)叫做對數函數,其中x是自變量,函數的定義域是(0,+∞).
1對數函數的定義與指數函數類似,都是形式定義,注意辨別.如:注意:○ x2對數函數對底數的限制:(a?0,都不是對數函數.○5y?2log2x,y?log5且a?1).
3.根據對數函數定義填空;
例1 (1)函數y=logax的定義域是___________ (其中a>0,a≠1) (2)函數y=loga(4-x)的定義域是___________ (其中a>0,a≠1)說明:本例主要考察對數函數定義中底數和定義域的限制,加深對概念的理
解,所以把教材中的解答題改為填空題,節省時間,點到為止,以避免挖深、拓展、引入復合函數的概念。
[設計意圖:新課標強調“考慮到多數高中生的認知特點,為了有助于他們對函數概念本質的理解,不妨從學生自己的生活經歷和實際問題入手”。因此,新課引入不是按舊教材從反函數出發,而是選擇從兩個材料引出對數函數的概念,讓學生熟悉它的知識背景,初步感受對數函數是刻畫現實世界的又一重要數學模型。這樣處理,對數函數顯得不抽象,學生容易接受,降低了新課教學的起點] 2
(二)嘗試畫圖、形成感知1.確定探究問題
教師:當我們知道對數函數的定義之后,緊接著需要探討什么問題?學生1:對數函數的圖象和性質
教師:你能類比前面研究指數函數的思路,提出研究對數函數圖象和性質的方
法嗎?
學生2:先畫圖象,再根據圖象得出性質
教師:畫對數函數的圖象是否象指數函數那樣也需要分類?學生3:按a?1和0?a?1分類討論
教師:觀察圖象主要看哪幾個特征?
學生4:從圖象的形狀、位置、升降、定點等角度去識圖
教師:在明確了探究方向后,下面,按以下步驟共同探究對數函數的圖象:步驟一:(1)用描點法在同一坐標系中畫出下列對數函數的圖象y?log2xy?log1x 2 (2)用描點法在同一坐標系中畫出下列對數函數的圖象y?log3xy?log1x 3步驟二:觀察對數函數y?log2x、y?log3x與y?log1x、y?log1x的圖象特23征,看看它們有那些異同點。
步驟三:利用計算器或計算機,選取底數a(a?0,且a?1)的若干個不同的值,
在同一平面直角坐標系中作出相應對數函數的圖象。觀察圖象,它們有哪些共同特征?
步驟四:規納出能體現對數函數的代表性圖象
步驟五:作指數函數與對數函數圖象的比較2.學生探究成果
(1)如圖4—3、4—4較為熟練地用描點法畫出下列對數函數y?log2x、 y?log1x、 y?log3x、y?log1x的圖象23圖4—3圖4—4 (2)如圖4—5學生選取底數a=1/4、1/5、1/6、1/10、4、5、6、10,并推薦幾位代表上臺演示‘幾何畫板’,得到相應對數函數的圖象。由于學生自己動手,加上‘幾何畫板’的強大作圖功能,學生非常清楚地看到了底數a是如何影響函數y?logax(a?0,且a?1)圖象的變化。
圖4—5 (3)有了這種畫圖感知的過程以及學習指數函數的經驗,學生很明確y = loga x (a>1)、y = loga x (0(中部)
高中數學教案設計 篇11
教學目標
1.明確等差數列的定義.
2.掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題
3.培養學生觀察、歸納能力.
教學重點
1. 等差數列的概念;
2. 等差數列的通項公式
教學難點
等差數列“等差”特點的理解、把握和應用
教具準備
投影片1張
教學過程
(I)復習回顧
師:上兩節課我們共同學習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)
(Ⅱ)講授新課
師:看這些數列有什么共同的特點?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:積極思考,找上述數列共同特點。
對于數列①(1≤n≤6);(2≤n≤6)
對于數列②-2n(n≥1)(n≥2)
對于數列③(n≥1)(n≥2)
共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。
師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。
一、定義:
等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。
如:上述3個數列都是等差數列,它們的公差依次是1,-2, 。
二、等差數列的通項公式
師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列的首項是,公差是d,則據其定義可得:
若將這n-1個等式相加,則可得:
即:即:即:……
由此可得:師:看來,若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。
如數列①(1≤n≤6)
數列②:(n≥1)
數列③:(n≥1)
由上述關系還可得:即:則:=如:三、例題講解
例1:(1)求等差數列8,5,2…的第20項
(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?
解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。
(Ⅲ)課堂練習
生:(口答)課本P118練習3
(書面練習)課本P117練習1
師:組織學生自評練習(同桌討論)
(Ⅳ)課時小結
師:本節主要內容為:①等差數列定義。
即(n≥2)
②等差數列通項公式 (n≥1)
推導出公式:
(V)課后作業
一、課本P118習題3.2 1,2
二、1.預習內容:課本P116例2P117例4
2.預習提綱:
①如何應用等差數列的定義及通項公式解決一些相關問題?
②等差數列有哪些性質?
高中數學教案設計 篇12
一、單元教學內容
(1)算法的基本概念
(2)算法的基本結構:順序、條件、循環結構
(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句
二、單元教學內容分析
算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力
三、單元教學課時安排:
1、算法的基本概念3課時
2、程序框圖與算法的基本結構5課時
3、算法的基本語句2課時
四、單元教學目標分析
1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義
2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。
3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。
4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
五、單元教學重點與難點分析
1、重點
(1)理解算法的含義
(2)掌握算法的基本結構
(3)會用算法語句解決簡單的實際問題
2、難點
(1)程序框圖
(2)變量與賦值
(3)循環結構
(4)算法設計
六、單元總體教學方法
本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。
七、單元展開方式與特點
1、展開方式
自然語言→程序框圖→算法語句
2、特點
(1)螺旋上升分層遞進
(2)整合滲透前呼后應
(3)三線合一橫向貫通
(4)彈性處理多樣選擇
八、單元教學過程分析
1.、算法基本概念教學過程分析
對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。
2、算法的流程圖教學過程分析
對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。
3.、基本算法語句教學過程分析
經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,
4.、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
九、單元評價設想
1、重視對學生數學學習過程的評價
關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。
2、正確評價學生的數學基礎知識和基本技能
關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法
高中數學教案設計 篇13
一、探究式教學模式概述
1、探究式教學模式的含義。探究式教學就是學生在教師引導下,像科學家發現真理那樣以類似科學探究的方式來展開學習活動,通過自己大腦的獨立思考和探究,去弄清事物發展變化的起因和內在聯系,從中探索出知識規律的教學模式。它的基本特征是教師不把跟教學內容有關的內容和認知策略直接告訴學生,而是創造一種適宜的認知和合作環境,讓學生通過探究形成認知策略,從而對教學目標進行一種全方位的學習,實現學生從被動學習到主動學習,培養學生的科學探究能力、創新意識和科學精神??梢?,探究式教學主張把學習知識的過程和探究知識的過程統一起來,充分發揮學生學習的自主性和參與性。
2、堂探究式教學的實質。課堂探究式教學的實質是使學生通過類似科學家科學探究的過程來理解科學探究概念和科學規律的本質,并培養學生的科學探究能力。具體地說,它包括兩個相互聯系的方面:一是有一個以“學”為中心的探究性學習環境。在這個環境中有豐富的教學資源,而且這些資源是圍繞某個知識主題來展開的。這個學習環境具有民主和諧的課堂氣氛,它使學生很少感到有壓力,能自主尋找所需要的信息,提出自己的設想,并以自己的方式檢驗其設想。二是教師可以給學生提供必要的幫助和指導,使學生在研究中能明確方向。這說明探究式教學的本質特征是不直接把與教學目標有關的概念和認知策略告訴學生,取而代之的是教師創造出一種智力交流和社會交往的環境,讓學生通過探究自己發現規律。
3、探究式教學模式的特征。
(1)問題性。問題性是探究式教學模式的關鍵。能否提出對學生具有挑戰性和吸引力的問題,使學生產生問題意識,是探究教學成功與否的關鍵所在。恰當的問題會激起學生強烈的學習愿望,并引發學生的求異思維和創造思維?,F代教育心理學研究提出:“學生的學習過程和科學家的探索過程在本質上是一樣的,都是一個發現問題、分析問題、解決問題的過程?!彼耘囵B學生的問題意識是探究式教學的重要使命。
(2)過程性。過程性是探究式教學模式的重點。愛因斯坦說:“結論總以完成的形式出現,讀者體會不到探索和發現的喜悅,感覺不到思想形成的生動過程,也就很難達到清楚、全面理解的境界。”探究式教學模式正是考慮到這些人的認知特點來組織教學的,它強調學生探索知識的經歷和獲得新知識的親身感悟。
(3)開放性。開放性是探究式教學模式的難點。探究式教學模式總是綜合合作學習、發現學習、自主學習等學習方式的長處,培養學生良好的學習態度和學習方法,提倡和發展多樣化的學習方式。探究式教學模式要面對大量開放性的問題,教學資源和探究的結論面對生活、生產和科研是開放的,這一切都為教師的教與學生的學帶來了機遇與挑戰。
二、教學設計案例
1、教學內容:數字排列中3、9的探究式教學。
2、教學目標。
(1)知識與技能:掌握數字排列的知識,能靈活運用所學知識。
(2)過程與方法:在探究過程中掌握分析問題的方法和邏輯推理的方法。
(3)情感態度與價值觀:培養學生觀察、分析、推理、歸納等綜合能力,讓學生體會到認識客觀規律的一般過程。
3、教學方法:談話探究法,討論探究法。
4、教學過程。
(1)創設情境。教師:在高中數學第十章的教學中,有關數字排列的問題占有重要位置。我們曾經做過的有關數字排列的題目,如“由若干個數字排列成偶數”、“能被5整除的數”等問題,只要使排列成的數的個位數字為偶數,則這個數就是偶數,當排列成的數的個位數字為0或5時,則這個數就能被5整除。那么能被3整除的數,能被9整除的數有何特點?
(2)提出問題。
問題1:在用1、2、3、4、5、6六個數字組成沒有重復數字的四位數中,是9的倍數的共有()
A、36個B、18個C、12個D、24個
問題2:在用0、1、2、3、4、5這六個數字組成沒有重復數字的自然數中,有多少個能被6整除的五位數?
(3)探究思考。點評:乍一看問題1,對于由若干個數字排列成9的倍數的問題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數的個位數字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數,不能只考慮個位數字了。于是,需另辟蹊徑,探究能被9整除的數的特點,尋求解決問題的途徑。
教師:同學們觀察81、72、63、54、45、36、27、18、9這些數,甚至再寫出幾個能被9整除的'數,如981、1872等,看看它們有何特點?
學生:它們都滿足“各位數字之和能被9整除”。
教師:此結論的正確性如何?
學生:老師,我們證明此結論的正確性,好嗎?
教師:好。
學生:證明:不妨以n是一個四位數為例證之。
設n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)
則n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈N
-
述職報告之家(ys575.com)小編精心推薦:
- 高中數學教案設計?|?高中教案設計?|?高中數學教師述職報告?|?高中數學教師晉級述職報告?|?高中數學教案設計?|?高中數學教案設計
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可證定理的后半部分。
教師:看來上述結論正確。所以得到如下定理。
定理:如果一個自然數n各個數位上的數字之和能被9整除,那么這個數n就能夠被9整除;如果一個自然數n各個數位上的數字之和能被3整除,那么這個數n就能夠被3整除。
教師:利用該定理可解決“能被3、9整除”的數字排列問題,請同學們先解答問題1。
學生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教師:啟發學生觀察這些數字有何特點?提問學生。
學生:可以看出只要從1、2、3、4、5、6這六個數中,選取的四個數字中含1(或2),或者同時含1、2,選取的四個數字之和都不是9的倍數。
教師:請學生們繼續嘗試選取其他數字試一試。
學生:3+4+5+6=18是9的倍數。
教師:因此用1、2、3、4、5、6六個數字組成沒有重復數字的四位數中,是9的倍數的數,就是由3、4、5、6進行全排列所得,共有=24(個)。
故應選D。
(4)學以致用。
問題2:在用0、1、2、3、4、5這六個數字組成沒有重復數字的自然數中,有多少個能被6整除的五位數?
教師:從上面的定理知:如果一個自然數n各個數位上的數字之和能被3整除,那么這個數n就能夠被3整除。同學們對問題2有何想法?
學生討論:
學生1:被6整除的五位數必須既能被2整除,又能被3整除,故能被6整除的五位數,即為各位數字之和能被3整除的五位偶數。
學生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個數字可分兩類:一類是5個數字中無0,另一類是5個數字中有0(但不含3)。
學生3:第一類:5個數字中無0的五位偶數有。
第二類:5個數字中含有0不含3的五位偶數有兩類,第一,0在個位有個;第二,個位是2或4有,所以共有+ 。
學生4:由分類計數原理得:能被6整除的無重復數字的五位數共有+ + =108(個)。
(5)概括強化。
重點:了解數字排列問題的特點,理解掌握數字排列中3、9問題的規律。
難點:數字排列知識的靈活應用。
關鍵:證明的思路以及定理的得出。
新學知識與已知知識之間的區別和聯系:已知知識“由若干個數字排列成偶數”、“能被5整除的數”等問題,只要使排列成的數的個位數字為偶數,則這個數就是偶數,當排列成的數的個位數字為0或5時,則這個數就能被5整除”。新學知識“如果一個自然數n各個數位上的數字之和能被9整除,那么這個數n就能夠被9整除;如果一個自然數n各個數位上的數字之和能被3整除,那么這個數n就能夠被3整除。都是數字排列知識,要學會靈活應用。
(6)作業。請同學們自擬練習題,以求達到熟練解決此類問題的目的。
總之,探究式教學模式是針對傳統教學的種種弊端提出來的,新課程改革強調改變課程過于注重知識的傳授和過于強調接受式學習的狀況,倡導學生主動參與樂于探究、勤于動手,讓學生經歷科學探究過程,學習科學研究方法,并強調獲得知識、技能的過程成為學會學習和形成價值觀的過程,以培養學生的探究精神、創新意識和實踐能力。
高中數學教案設計 篇14
一、教學目標
1、知識與技能
(1)理解對數的概念,了解對數與指數的關系;
(2)能夠進行指數式與對數式的互化;
(3)理解對數的性質,掌握以上知識并培養類比、分析、歸納能力;
2、過程與方法
3、情感態度與價值觀
(1)通過本節的`學習體驗數學的嚴謹性,培養細心觀察、認真分析
分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神;
(2)感知從具體到抽象、從特殊到一般、從感性到理性認知過程;
(3)體驗數學的科學功能、符號功能和工具功能,培養直覺觀察、
探索發現、科學論證的良好的數學思維品質、
二、教學重點、難點
教學重點
(1)對數的定義;
(2)指數式與對數式的互化;
教學難點
(1)對數概念的理解;
(2)對數性質的理解;
三、教學過程:
四、歸納總結:
1、對數的概念
一般地,如果函數ax=n(a0且a≠1)那么數x叫做以a為底n的對數,記作x=logan,其中a叫做對數的底數,n叫做真數。
2、對數與指數的互化
ab=n?logan=b
3、對數的基本性質
負數和零沒有對數;loga1=0;logaa=1對數恒等式:alogan=n;logaa=nn
五、課后作業
課后練習1、2、3、4
六、板書設計
高中數學教案設計 篇15
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數學中一些常用的的數集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態度與價值觀:感受集合語言的意義和作用,培養合作交流、勤于思考、積極探討的精神,發展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
【問題1】在初中我們已經學習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?
[設計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
【問題4】同學們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關系?
[設計意圖]區別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關系。
【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有實數根”組成的集
[設計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x-7<3的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結這節課我們主要學習了那些內容?有什么學習體會?
[設計意圖]學習小結。對本節課所學知識進行回顧。布置作業。
高中數學教案設計 篇16
一、教材分析
1.熟悉教材內容在教材體系中的地位和作用,理清教材內容的邏輯結構
將教材內容放在教材體系之中,研究它在一章中、一個學習階段中、初中或高中學段中甚至整個中學學段中的地位和作用,理清教材內容的邏輯結構就是要弄清楚教材內容主要包含哪些知識點,這些知識點之間有何內在的邏輯關系。
2.分析出核心內容以及所蘊涵的數學思想方法
分析教材不僅要理清教材內容的邏輯結構,更要分析出對數學學科具有重要影響且處于主干地位、對學生數學認知結構具有不可或缺的基礎作用的核心內容以及核心內容的內容核心,還要分析出內容本身所蘊涵的數學思想方法。
3.突出教材的重點和難點
教學重點是學習內容中主要的、基本的、中心的內容。針對課時(一堂課),除了主要的、基本的、中心的知識技能是教學的重點外,諸如概念形成與定義過程;公式、定理、法則的探究過程;應用題的審題和分析等也可確定為不同課的重點。
教學難點是學生難于理解和掌握的學習內容,或是學生易于混淆或出錯的學習內容。這些內容相對于學生而言,較為抽象、復雜,離生活實際較遠。
二、學情分析
1.分析學生原有的認知基礎
即學生學習該內容時所具備的與該內容相聯系的知識、技能、方法、能力等,以確定新課的起點,做好承上啟下、新舊知識的有機銜接工作。
2.了解學生的生理、心理
中學生的認識能力有一個逐步發展的過程,他們抽象思維能力較低,對教材中概念、原理、規律等知識的理解比較困難;形象思維能力強,精力旺盛,但注意力容易分散。通過分析了解不同層次學生的生理心理與學習該內容是否相匹配及可能產生的知識誤區,充分預見可能存在的`問題,在課堂上有針對性地加以分析,使教學工作具有較強的預見性,針對性和功效性。
三、教學目標
1.知識和技能目標,是對學生學習結果的描述,即學生通過學習所要達到的結果,又叫結果性目標。這種目標一般有三個層次的要求:學懂、學會、能應用。
2.過程與方法目標,是學生在教師的指導下,如何獲取知識和技能的程序和具體做法,是過程中的目標,又叫程序性目標。這種目標強調三個過程:做中學、學中做、反思。
3.情感態度和價值觀目標,是學生對過程或結果的體驗后的傾向和感受,是對學習過程和結果的主觀經驗,又叫體驗性目標。它的層次有認同、體會、內化三個層次。
知識與技能目標是過程與方法目標、情感態度與價值觀目標的基礎;過程與方法目標是實現知識與技能目標的載體,情感態度與價值觀目標對其他目標有重要的促進和優化作用。
四、教學方法
中學數學常用的教學方法有講授法、談話法、演示法、練習法、問題探究法和情境教學法等。
五、教案的撰寫
高中數學教案設計 篇17
教學目標:
①掌握對數函數的性質。
②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值域及單調性。
③注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。
教學重點與難點:
對數函數的性質的應用。
教學過程設計:
⒈復習提問:對數函數的概念及性質。
⒉開始正課
1比較數的大小
例1比較下列各組數的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數有何特征?
生:這兩個對數底相等。
師:那么對于兩個底相等的對數如何比大小?
生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數函數的'單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1<5.9 loga5.1="">loga5.9
Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數
∵5.1<5.9 ∴loga5.1
師:請同學們觀察一下⑵中這三個對數有何特征?
生:這三個對數底、真數都不相等。
師:那么對于這三個對數如何比大小?
生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數值的大小常用方法:
①構造對數函數,直接利用對數函數的單調性比大小;
②借用“中間量”間接比大?。?/p>
③利用對數函數圖象的位置關系來比大小。
2函數的定義域,值域及單調性。
高中數學教案設計 篇18
教學準備
教學目標
解三角形及應用舉例
教學重難點
解三角形及應用舉例
教學過程
一?;A知識精講
掌握三角形有關的定理
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊及其夾角,求另外一邊的對角(進而求其他邊和角);利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
熟練運用正弦定理、余弦定理及其變換形式,通過三角公式解決一些涉及三角形的三角函數問題。
二。問題討論
思維點撥:已知兩邊及其一邊的對角解三角形問題,使用正弦定理解,但需注意解的情況分析。
思維點撥:三角形中的角度變換,應靈活運用正弦、余弦定理。在求解時,要利用三角函數的相關性質。
例6:在某海濱城市附近海面有一臺風,據監測,當前臺風中心位于城市O(如圖)東南方向300公里的海面P處,并以20公里/小時的速度向西北方向移動,臺風影響的范圍為圓形區域,當前半徑為60公里,并以10公里/小時的速度逐漸擴大,問幾小時后該城市開始受到臺風的.影響。
一。 小結:
1、利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);
2、利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3、邊角互化是解三角形問題常用的手段。
三。作業:P80闖關訓練
高中數學教案設計 篇19
教學目標
1.明確等差數列的定義。
2.掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題
3.培養學生觀察、歸納能力。
教學重點
1. 等差數列的概念;
2. 等差數列的通項公式
教學難點
等差數列“等差”特點的理解、把握和應用
教具準備
投影片1張
教學過程
(I)復習回顧
師:上兩節課我們共同學習了數列的`定義及給出數列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)
(Ⅱ)講授新課
師:看這些數列有什么共同的特點?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:積極思考,找上述數列共同特點。
對于數列①(1≤n≤6);(2≤n≤6)
對于數列②-2n(n≥1)(n≥2)
對于數列③(n≥1)(n≥2)
共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。
師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。
一、定義:
等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。
如:上述3個數列都是等差數列,它們的公差依次是1,-2 。
二、等差數列的通項公式
師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列的首項是,公差是d,則據其定義可得:
若將這n-1個等式相加,則可得:
即:即:即:……
由此可得:師:看來,若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。
如數列①(1≤n≤6)
數列②:(n≥1)
數列③:(n≥1)
由上述關系還可得:即:則:=如:三、例題講解
例1:(1)求等差數列8,5,2…的第20項
(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?
解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。
(Ⅲ)課堂練習
生:(口答)課本P118練習3
(書面練習)課本P117練習1
師:組織學生自評練習(同桌討論)
(Ⅳ)課時小結
師:本節主要內容為:①等差數列定義。
即(n≥2)
②等差數列通項公式 (n≥1)
推導出公式:(V)課后作業
一、課本P118習題3.2 1,2
二、1.預習內容:課本P116例2P117例4
2.預習提綱:
①如何應用等差數列的定義及通項公式解決一些相關問題?
②等差數列有哪些性質?
高中數學教案設計 篇20
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用定義解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率.
四、教學目標
1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3.借助多媒體輔助教學,激發學習數學的興趣.
五、教學重點與難點:
教學重點
1.對圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設計
【設計思路】
(一)開門見山,提出問題
一上課,我就直截了當地給出——
例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)線段 (D)不存在
(2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預設】
估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5
入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。
(二)理解定義、解決問題
例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2), 求|PA|
【設計意圖】
運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。
【學情預設】
根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會——
練習:設點Q是圓C:(x1)2225|AB|的最小值。 3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設計意圖】 練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導學生對自己的結論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1. 圓錐曲線的第一定義
2. 圓錐曲線的統一定義
(二)圓錐曲線定義的應用舉例
1.雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。
2.|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點, F1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。
3.在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。
4.(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。
x2y211(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。
5.已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。
七、教學反思
1.本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的`數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。
2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法. 循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。
-
述職報告之家小編為您推薦高中數學教案設計專題,歡迎訪問:高中數學教案設計
