丝袜一区二区三区_日韩av网站电影_中文字幕在线视频日韩_日韩免费在线看_日韩在线观看你懂的_91精品国产综合久久香蕉_日韩精品免费在线播放_91色视频在线导航_欧美在线视频一区二区_欧美性色19p_亚洲影院污污._国产一区二区三区在线视频_yellow中文字幕久久_欧美男插女视频_亚洲韩国青草视频_欧美日韩综合视频

你的位置: 述職報告之家 > 述職范文 > 導航 > 高中數學備課教案大全(精華14篇)

高中數學備課教案大全(精華14篇)

發表時間:2017-12-29

高中數學備課教案大全(精華14篇)。

第一篇 高中數學備課教案大全

【學習導航】

(一)兩角和與差公式

(二)倍角公式

2cos2α=1+cos2α 2sin2α=1-cos2α

注意:倍角公式揭示了具有倍數關系的兩個角的三角函數的運算規律,可實現函數式的降冪的變化。

注: (1)兩角和與差的三角函數公式能夠解答的三類基本題型:求值題,化簡題,證明題。

(2)對公式會“正用”,“逆用”,“變形使用”;

(3)掌握“角的演變”規律,

(4)將公式和其它知識銜接起來使用。

重點難點

重點:幾組三角恒等式的應用

難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式

【精典范例】

例1 已知

求證:

例2 已知 求 的取值范圍

分析 難以直接用 的式子來表達,因此設 ,并找出 應滿足的等式,從而求出 的取值范圍.

例3 求函數 的值域.

例4 已知

且 、 、 均為鈍角,求角 的值.

分析 僅由 ,不能確定角 的值,還必須找出角 的范圍,才能判斷 的值. 由單位圓中的余弦線可以看出,若 使 的角為 或 若 則 或

【選修延伸】

例5 已知

求 的值.

例6 已知 ,

求 的值.

例7 已知

求 的值.

例8 求值:(1) (2)

【追蹤訓練】

1. 等于 ( )

A. B. C. D.

2.已知 ,且

,則 的值等于 ( )

A. B. C. D.

3.求值: = .

4.求證:(1)

第二篇 高中數學備課教案大全

教學目標:

1.理解流程圖的選擇結構這種基本邏輯結構.

2.能識別和理解簡單的框圖的功能.

3.能運用三種基本邏輯結構設計流程圖以解決簡單的問題.

教學方法:

1.通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知.

2.在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構.

學生討論,教師引導學生進行表達.

如果,那么,

否則;

輸出行李的重量和運費.

上述算法可以用流程圖表示為:

教師邊講解邊畫出第10頁圖1-2-6.

如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執行,否則執行.

2.說明:

斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的設計;

(2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;

行,但或兩個框中可以有一個是空的,即不執行任何操作;

(4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和

兩個退出點.

3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?

第三篇 高中數學備課教案大全

教學目的:掌握圓的標準方程,并能解決與之有關的問題

教學重點:圓的標準方程及有關運用

教學難點:標準方程的靈活運用

教學過程:

一、導入新課,探究標準方程

二、掌握知識,鞏固練習

練習:⒈說出下列圓的方程

⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

⒉指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判斷3x-4y-10=0和x2+y2=4的位置關系

⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)

練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

四、小結練習P771,2,3,4

五、作業P811,2,3,4

第四篇 高中數學備課教案大全

【課題名稱】

《等差數列》的導入

【授課年級】

高中二年級

【教學重點】

理解等差數列的概念,能夠運用等差數列的定義判斷一個數列是否為等差數列。

【教學難點】

等差數列的性質、等差數列“等差”特點的理解,

【教具準備】多媒體課件、投影儀

【三維目標】

㈠知識目標:

了解公差的概念,明確一個等差數列的限定條件,能根據定義判斷一個等差數列是否是一個等差數列;

㈡能力目標:

通過尋找等差數列的共同特征,培養學生的觀察力以及歸納推理的能力;

㈢情感目標:

通過對等差數列概念的歸納概括,培養學生的觀察、分析資料的能力。

【教學過程】

導入新課

師:上兩節課我們已經學習了數列的定義以及給出表示數列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的角度反映了數列的特點。下面我們觀察以下的幾個數列的例子:

(1)我們經常這樣數數,從0開始,每個5個數可以得到數列:0,5,10,15,20,()

(2)2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目工設置了7個級別,其中較輕的4個級別體重組成的數列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?

(3)為了保證優質魚類有良好的生活環境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數列:18,15.5,13,10.5,8,(),則第六個數應為多少?

(4)10072,10144,10216,( ),10360

請同學們回答以上的四個問題

生:第一個數列的第6項為25,第二個數列的第5個數為68,第三個數列的第6個數為5.5,第四個數列的第4個數為10288。

師:我來問一下,你是依據什么得到了這幾個數的呢?請以第二個數列為例說明一下。

生:第二個數列的后一項總比前一項多5,依據這個規律我就得到了這個數列的第5個數為68.

師:說的很好!同學們再仔細地觀察一下以上的四個數列,看看以上的四個數列是否有什么共同特征?請注意,是共同特征。

生1:相鄰的兩項的差都等于同一個常數。

師:很好!那作差是否有順序?是否可以顛倒?

生2:作差的順序是后項減去前項,不能顛倒!

師:正如生1的總結,這四個數列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個常數(即等差)。我們叫這樣的數列為等差數列。這就是我們這節課要研究的內容。

推進新課

等差數列的定義:一般地,如果一個數列從第2項起,每一項與它的前一項的差都等于同一個常數,那么這個數列就叫做等差數列,這個常數就叫做等差數列的公差,公差常用字母d表示。從剛才的分析,同學們應該注意公差d一定是由后項減前項。

師:有哪個同學知道定義中的關鍵字是什么?

生2:“從第二項起”和“同一個常數”

第五篇 高中數學備課教案大全

教材分析:

1、內容簡析:

本節主要內容是等比數列的概念及通項公式,它是繼等差數列后有一個特殊數列,是研究數列的重要載體,與實際生活有密切的聯系,如細胞分裂、銀行貸款問題等都要用等比數列的知識來解決,在研究過程中體現了由特殊到一般的數學思想、函數思想和方程思想,在高考中占有重要地位。

2、教學目標確定:

從知識結構來看,本節核心內容是等比數列的概念及通項公式,可從等比數列的“等比”的特點入手,結合具體的例子來學習等比數列的概念,同時,還要注意“比”的特性。在學習等比數列的定義的基礎上,導出等比數列的通項公式以及一些常用的性質。從而可以確定如下教學目標(三維目標):

第一課時:

(1)理解等比數列的概念 ,掌握等比數列的通項公式及公式的推導

(2)在教學過程中滲透方程、函數、特殊到一般等數學思想,提高學生觀察、歸納、猜想、證明等邏輯思維能力

(3)通過對等比數列通項公式的推導,培養學生發現意識、創新意識

第二課時:

(1)加深對等比數列概念理解,靈活運用等比數列的定義及通項公式,了解等比中項概念,掌握等比數列的性質

(2)運用等比數列的定義及通項公式解決問題,增強學生的應用

3、教學重點與難點:

第一課時:

重點:等比數列的定義及通項公式

難點:應用等比數列的定義及通項公式,解決相關簡單問題

第二課時:

重點:等比中項的理解與運用,及等比數列定義及通項公式的應用

難點:靈活應用等比數列的定義及通項公式、性質解決相關問題

學情分析:

從整個中學數學教材體系安排分析,前面已安排了函數知識的學習,以及等差數列的有關知識的學習,但是對于國際象棋故事中的問題,學生還是不能解決,存在疑問。本課正是由此入手來引發學生的認知沖突,產生求知的欲望。而矛盾解決的關鍵依然依賴于學生原有的認知結構──在研究等差數列中用到的思想方法,于是從幾個特殊的對應觀察、分析、歸納、概括得出等比數列的定義及通項公式。

高一學生正處于從初中到高中的過度階段,對數學思想和方法的認識還不夠,思維能力比較欠缺,他們重視具體問題的運算而輕視對問題的抽象分析。同時,高一階段又是學生形成良好的思維能力的關鍵時期。因此,本節教學設計一方面遵循從特殊到一般的認知規律,另一方面也加強觀察、分析、歸納、概括能力培養。

多數學生愿意積極參與,積極思考,表現自我。所以教師可以把盡可能多的時間、空間讓給學生,讓學生在參與的過程中,學習的自信心和學習熱情等個性心理品質得到很好的培養。這也體現了教學工作中學生的主體作用。

教法選擇與學法指導:

由于等比數列與等差數列僅一字之差,在知識內容上是平行的,可用比較法來學習等比數列的相關知識。在深刻理解等差數列與等比數列的區別與聯系的基礎上,牢固掌握數列的相關知識。因此,在教法和學法上可做如下考慮:

1、教法:采用問題啟發與比較探究式相結合的教學方法

教法構思如下:提出問題 引發認知沖突 觀察分析 歸納概括 得出結論 總結提高。在教師的精心組織下,對學生各種能力進行培養,并以促進學生發展,又以學生的發展帶動其學習。同時,它也能促進學生學會如何學習,因而特別有利于培養學生的探索能力。

2、學法指導:

學生學習的目的在于學會學習、思考,達到創新的目的,掌握科學有效的學習方法,可增強學生的學習信心,培養其學習興趣,提高學習效率,從而激發強烈的學習積極性。我考慮從以下幾方面來進行學法指導:

把隱含在教材中的思想方法顯化。如等比數列通項公式的推導體現了從特殊到一般的方法。其通項公式 是以n為字變量的函數,可利用函數思想來解決數列有關問題。思想方法的顯化對提高學生數學修養有幫助。

注重從科學方法論的高度指導學生的學習。通過提問、分析、解答、總結,培養學生發現問題、分析問題、解決問題的能力。訓練邏輯思維的嚴密性和深刻性的目的。

教學過程設計:

第一課時

1、創設情境,提出問題 (閱讀本章引言并打出幻燈片)

情境1:本章引言內容

提出問題:同學們,國王有能力滿足發明者的要求嗎?

引導學生寫出各個格子里的麥粒數依次為:

1,2, ……, (1)

于是發明者要求的麥粒總數是

情境2:某人從銀行貸款10000元人民幣,年利率為r,若此人一年后還款,二年后還款,三年后還款,……,還款數額依次滿足什么規律?

10000(1+r),10000 ,10000 ,…… (2)

情境3:將長度為1米的木棒取其一半,將所得的一半再取其一半,再將所得的木棒繼續取其一半,……各次取得的木棒長度依次為多少? …… (3)

問:你能算出第7次取一半后的長度是多少嗎?觀察、歸納、猜想得

2、自主探究,找出規律:

學生對數列(1),(2),(3)分析討論,發現共同特點:從第二項起,每一項與前一項的比都等于同一常數。也就是說這些數列從第二項起,每一項與前一項的比都具有“相等”的特點。于是得到等比數列的定義:

一般地,如果一個數列從第二項起,每一項與它的前一項的比等于同一個常數,那么這個數列叫做等比數列。這個常數叫做等比數列的公比,公比常用字母 表示,即 。

如數列(1),(2),(3)都是等比數列,它們的公比依次是2,1+r,

點評:等比數列與等差數列僅一字之差,對比知從第二項起,每一項與前一項之“差”為常數,則為等差數列,之“比”為常數,則為等比數列,此常數稱為“公差”或“公比”。

3、觀察判斷,分析總結:

觀察以下數列,判斷它是否為等比數列,若是,找出公比,若不是,說出理由,然后回答下面問題:

1,3,9,27,……

……

1,-2,4,-8,……

-1,-1,-1,-1,……

1,0,1,0,……

思考:①公比 能為0嗎?為什么?首項能為0嗎?

②公比 是什么數列?

③ 數列遞增嗎? 數列遞減嗎?

④等比數列的定義也恰好給出了等比數列的遞推關系式:

這一遞推式正是我們證明等比數列的重要工具。

選題分析;因為等差數列公差 可以取任意實數,所以學生對公比 往往忘卻它不能取0和能取1的特殊情況,以致于在不為具體數字(即為字母運算)時不會討論以上兩種情況,故給出問題以揭示學生對公比 有防患意識,問題③是讓學生明白 時等比數列的單調性不定,而 時數列為擺動數列,要注意與等差數列的區別。

備選題:已知 則 …… ,……成等比數列的從要條件是什么?

4、觀察猜想,求通項:

方法1:由定義知道 ……歸納得:等比數列的通項公式為:

(說明:推得結論的這一方法稱為歸納法,不是公式的證明,要想對這一方式的結論給出嚴格的證明,需在學習數學歸納法后完成,現階段我們只承認它是正確的就可以了)

方法2:迭代法

根據等比數列的定義有

……

方法3:由遞推關系式或定義寫出: …… ,通過觀察發現 …… ……

,即:

(此證明方法稱為“累商法”,在以后的數列證明中有重要應用)

公式 的特征及結構分析:

第六篇 高中數學備課教案大全

[學習目標]

(1)會用坐標法及距離公式證明Cα+β;

(2)會用替代法、誘導公式、同角三角函數關系式,由Cα+β推導Cα—β、Sα±β、Tα±β,切實理解上述公式間的關系與相互轉化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

[學習重點]

兩角和與差的正弦、余弦、正切公式

[學習難點]

余弦和角公式的推導

[知識結構]

1、兩角和的余弦公式是三角函數一章和、差、倍公式系列的基礎。其公式的證明是用坐標法,利用三角函數定義及平面內兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(證明過程見課本)

2、通過下面各組數的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、當α、β中有一個是的整數倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數的特例。

4、關于公式的正用、逆用及變用

第七篇 高中數學備課教案大全

整體設計

教學分析

本節通過圖象變換,揭示參數φ、ω、A變化時對函數圖象的形狀和位置的影響,討論函數y=Asin(ωx+φ)的圖象與正弦曲線的關系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進一步理解正、余弦函數的性質,它是研究函數圖象變換的一個延伸,也是研究函數性質的一個直觀反映.這節是本章的一個難點.

如何經過變換由正弦函數y=sinx來獲取函數y=Asin(ωx+φ)的圖象呢?通過引導學生對函數y=sinx到y=Asin(ωx+φ)的圖象變換規律的探索,讓學生體會到由簡單到復雜、由特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法;通過對參數φ、ω、A的分類討論,讓學生深刻認識圖象變換與函數解析式變換的內在聯系.

本節課建議充分利用多媒體,倡導學生自主探究,在教師的引導下,通過圖象變換和“五點”作圖法,正確找出函數y=sinx到y=Asin(ωx+φ)的圖象變換規律,這也是本節課的重點所在.

三維目標

1.通過學生自主探究,理解φ對y=sin(x+φ)的圖象的影響,ω對y=sin(ωx+φ)的圖象的影響,A對y=Asin(ωx+φ)的圖象的影響.

2.通過探究圖象變換,會用圖象變換法畫出y=Asin(ωx+φ)圖象的簡圖,并會用“五點法”畫出函數y=Asin(ωx+φ)的簡圖.

3.通過學生對問題的自主探究,滲透數形結合思想.培養學生的獨立意識和獨立思考能力.學會合作意識,培養學生理解動與靜的辯證關系,善于從運動的觀點觀察問題,培養學生解決問題抓主要矛盾的思想.在問題逐步深入的研究中喚起學生追求真理,樂于創新的情感需求,引發學生渴求知識的強烈愿望,樹立科學的人生觀、價值觀.

重點難點

教學重點:用參數思想分層次、逐步討論字母φ、ω、A變化時對函數圖象的形狀和位置的影響,掌握函數y=Asin(ωx+φ)圖象的簡圖的作法.

教學難點:由正弦曲線y=sinx到y=Asin(ωx+φ)的圖象的變換過程.

課時安排

2課時

教學過程

第1課時

導入新課

思路1.(情境導入)在物理和工程技術的許多問題中,都要遇到形如y=Asin(ωx+φ)的函數(其中A、ω、φ是常數).例如,物體做簡諧振動時位移y與時間x的關系,交流電中電流強度y與時間x的關系等,都可用這類函數來表示.這些問題的實際意義往往可從其函數圖象上直觀地看出,因此,我們有必要畫好這些函數的圖象.揭示課題:函數y=Asin(ωx+φ)的圖象.

思路2.(直接導入)從解析式來看,函數y=sinx與函數y=Asin(ωx+φ)存在著怎樣的關系?從圖象上看,函數y=sinx與函數y=Asin(ωx+φ)存在著怎樣的關系?接下來,我們就分別探索φ、ω、A對y=Asin(ωx+φ)的圖象的影響.

推進新課

新知探究

提出問題

①觀察交流電電流隨時間變化的圖象,它與正弦曲線有何關系?你認為可以怎樣討論參數φ、ω、A對y=Asin(ωx+φ)的圖象的影響?

②分別在y=sinx和y=sin(x+)的圖象上各恰當地選取一個縱坐標相同的點,同時移動這兩點并觀察其橫坐標的變化,你能否從中發現,φ對圖象有怎樣的影響?對φ任取不同的值,作出y=sin(x+φ)的圖象,看看與y=sinx的圖象是否有類似的關系?

③請你概括一下如何從正弦曲線出發,經過圖象變換得到y=sin(x+φ)的圖象.

④你能用上述研究問題的方法,討論探究參數ω對y=sin(ωx+φ)的圖象的影響嗎?為了作圖的方便,先不妨固定為φ=,從而使y=sin(ωx+φ)在ω變化過程中的比較對象固定為y=sin(x+).

⑤類似地,你能討論一下參數A對y=sin(2x+)的圖象的影響嗎?為了研究方便,不妨令ω=2,φ=.此時,可以對A任取不同的值,利用計算器或計算機作出這些函數在同一坐標系中的圖象,觀察它們與y=sin(2x+)的圖象之間的關系.

⑥可否先伸縮后平移?怎樣先伸縮后平移的?

活動:問題①,教師先引導學生閱讀課本開頭一段,教師引導學生思考研究問題的方法.同時引導學生觀察y=sin(x+)圖象上點的坐標和y=sinx的圖象上點的坐標的關系,獲得φ對y=sin(x+φ)的圖象的影響的具體認識.然后通過計算機作動態演示變換過程,引導學生觀察變化過程中的不變量,得出它們的橫坐標總是相差的結論.并讓學生討論探究.最后共同總結出:先分別討論參數φ、ω、A對y=Asin(ωx+φ)的圖象的影響,然后再整合.

圖1

問題②,由學生作出φ取不同值時,函數y=sin(x+φ)的圖象,并探究它與y=sinx的圖象的關系,看看是否仍有上述結論.教師引導學生獲得更多的關于φ對y=sin(x+φ)的圖象影響的經驗.為了研究的方便,不妨先取φ=,利用計算機作出在同一直角坐標系內的圖象,如圖1,分別在兩條曲線上恰當地選取一個縱坐標相同的點A、B,沿兩條曲線同時移動這兩點,并保持它們的縱坐標相等,觀察它們橫坐標的關系.可以發現,對于同一個y值,y=sin(x+)的圖象上的點的橫坐標總是等于y=sinx的圖象上對應點的橫坐標減去.這樣的過程可通過多媒體課件,使得圖中A、B兩點動起來(保持縱坐標相等),在變化過程中觀察A、B的坐標、xB-xA、|AB|的變化情況,這說明y=sin(x+)的圖象,可以看作是把正弦曲線y=sinx上所有的點向左平移個單位長度而得到的,同時多媒體動畫演示y=sinx的圖象向左平移使之與y=sin(x+)的圖象重合的過程,以加深學生對該圖象變換的直觀理解.再取φ=,用同樣的方法可以得到y=sinx的圖象向右平移后與y=sin(x)的圖象重合.

如果再變換φ的值,類似的情況將不斷出現,這時φ對y=sin(x+φ)的圖象的影響的鋪墊已經完成,學生關于φ對y=sin(x+φ)的圖象的影響的一般結論已有了大致輪廓.

問題③,引導學生通過自己的研究認識φ對y=sin(x+φ)的圖象的影響,并概括出一般結論:

y=sin(x+φ)(其中φ≠0)的圖象,可以看作是把正弦曲線上所有的點向左(當φ>0時)或向右(當φ<0時)平行移動|φ|個單位長度而得到.

問題④,教師指導學生獨立或小組合作進行探究,教師作適當指導.注意提醒學生按照從具體到一般的思路得出結論,具體過程是:(1)以y=sin(x+)為參照,把y=sin(2x+)的圖象與y=sin(x+)的圖象作比較,取點A、B觀察.發現規律:

圖2

如圖2,對于同一個y值,y=sin(2x+)的圖象上點的橫坐標總是等于y=sin(x+)的圖象上對應點的倍.教學中應當非常認真地對待這個過程,展示多媒體課件,體現伸縮變換過程,引導學生在自己獨立思考的基礎上給出規律.(2)取ω=,讓學生自己比較y=sin(x+)的圖象與y=sin(x+)圖象.教學中可以讓學生通過作圖、觀察和比較圖象、討論等活動,得出結論:把y=sin(x+)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),就得到y=sin(x+)的圖象.

當取ω為其他值時,觀察相應的函數圖象與y=sin(x+)的圖象的關系,得出類似的結論.這時ω對y=sin(ωx+φ)的圖象的影響的鋪墊已經完成,學生關于ω對y=sin(ωx+φ)的圖象的影響的一般結論已有了大致輪廓.教師指導學生將上述結論一般化,歸納y=sin(ωx+φ)的圖象與y=sin(x+φ)的圖象之間的關系,得出結論:

函數y=sin(ωx+φ)的圖象可以看作是把y=sin(x+φ)的圖象上所有點的橫坐標縮短(當ω>1時)或伸長(當0

圖3

問題⑤,教師點撥學生,探索A對圖象的影響的過程,與探索ω、φ對圖象的影響完全一致,鼓勵學生獨立完成.學生觀察y=3sin(2x+)的圖象和y=sin(2x+)的圖象之間的關系.如圖3,分別在兩條曲線上各取一個橫坐標相同的點A、B,沿兩條曲線同時移動這兩點,并使它們的橫坐標保持相同,觀察它們縱坐標的關系.可以發現,對于同一個x值,函數y=3sin(2x+)的圖象上的點的縱坐標等于函數y=sin(2x+)的圖象上點的縱坐標的3倍.這說明,y=3sin(2x+)的圖象,可以看作是把y=sin(2x+)的圖象上所有的點的縱坐標伸長到原來的3倍(橫坐標不變)而得到的通過實驗可以看到,A取其他值時也有類似的情況.有了前面兩個參數的探究,學生得出一般結論:

函數y=Asin(ωx+φ)(其中A>0,ω>0)的圖象,可以看作是把y=sin(ωx+φ)上所有點的縱坐標伸長(當A>1時)或縮短(當0 由此我們得到了參數φ、ω、A對函數y=Asin(ωx+φ)(其中A>0,ω>0)的圖象變化的影響情況.一般地,函數y=Asin(ωx+φ)(其中A>0,ω>0)的圖象,可以看作用下面的方法得到:先畫出函數y=sinx的圖象;再把正弦曲線向左(右)平移|φ|個單位長度,得到函數y=sin(x+φ)的圖象;然后使曲線上各點的橫坐標變為原來的倍,得到函數y=sin(ωx+φ)的圖象;最后把曲線上各點的縱坐標變為原來的A倍,這時的曲線就是函數y=Asin(ωx+φ)的圖象.

⑥引導學生類比得出.其順序是:先伸縮橫坐標(或縱坐標),再伸縮縱坐標(或橫坐標),最后平移.但學生很容易在第三步出錯,可在圖象變換時,對比變換,以引起學生注意,并體會一些細節.

由此我們完成了參數φ、ω、A對函數圖象影響的探究.教師適時地引導學生回顧思考整個探究過程中體現的思想:由簡單到復雜,由特殊到一般的化歸思想.

討論結果:①把從函數y=sinx的圖象到函數y=Asin(ωx+φ)的圖象的變換過程,分解為先分別考察參數φ、ω、A對函數圖象的影響,然后整合為對y=Asin(ωx+φ)的整體考察.

②略.

③圖象左右平移,φ影響的是圖象與x軸交點的位置關系.

④縱坐標不變,橫坐標伸縮,ω影響了圖象的形狀.

⑤橫坐標不變,縱坐標伸縮,A影響了圖象的形狀.

⑥可以.先伸縮后平移(提醒學生盡量先平移),但要注意第三步的平移.

y=sinx的圖象

得y=Asinx的圖象

得y=Asin(ωx)的圖象

得y=Asin(ωx+φ)的圖象.

規律總結:

先平移后伸縮的步驟程序如下:

y=sinx的圖象

得y=sin(x+φ)的圖象

得y=sin(ωx+φ)的圖象

得y=Asin(ωx+φ)的圖象.

先伸縮后平移的步驟程序(見上).

應用示例

例1 畫出函數y=2sin(x-)的簡圖.

活動:本例訓練學生的畫圖基本功及鞏固本節所學知識方法.

(1)引導學生從圖象變換的角度來探究,這里的φ=,ω=,A=2,鼓勵學生根據本節所學內容自己寫出得到y=2sin(x-)的圖象的過程:只需把y=sinx的曲線上所有點向右平行移動個單位長度,得到y=sin(x-)的圖象;再把后者所有點的橫坐標伸長到原來的3倍(縱坐標不變),得到y=sin(x-)的圖象;再把所得圖象上所有點的縱坐標伸長到原來的2倍(橫坐標不變)而得到函數y=2sin(x-)的圖象,如圖4所示.

圖4

(2)學生完成以上變換后,為了進一步掌握圖象的變換規律,教師可引導學生作換個順序的圖象變換,要讓學生自己獨立完成,仔細體會變化的實質.

(3)學生完成以上兩種變換后,就得到了兩種畫函數y=2sin(x-),簡圖的方法,教師再進一步的啟發學生能否利用“五點法”作圖畫出函數y=2sin(x-)的簡圖,并鼓勵學生動手按“五點法”作圖的要求完成這一畫圖過程.

解:方法一:畫出函數y=2sin(x-)簡圖的方法為

y=sinxy=sin(x-)

y=sin(x-)

y=2sin(x-).

方法二:畫出函數y=2sin(x-)簡圖的又一方法為

y=sinxy=sinx

y=2sinxy=2sin(x-)=2sin(x-).

方法三:(利用“五點法”作圖——作一個周期內的圖象)

令X=x-,則x=3(X+).列表:

X

π

X

Y

2

-2

描點畫圖,如圖5所示.

圖5

點評:學生獨立完成以上探究后,對整個的圖象變換及“五點法”作圖會有一個新的認識.但教師要強調學生注意方法二中第三步的變換,左右平移變換只對“單個”x而言,這點是個難點,學生極易出錯.對于“五點法”作圖,要強調這五個點應該是使函數取最大值、最小值以及曲線與x軸相交的點.找出它們的方法是先作變量代換,設X=ωx+φ,再用方程思想由X取0,,π,,2π來確定對應的x值.

變式訓練

1.20xx山東威海一模統考,12 要得到函數y=sin(2x+)的圖象,只需將函數y=sinx的圖象( )

A.向左平移個單位,再把所有點的橫坐標伸長到原來的2倍,縱坐標不變

B.向右平移個單位,再把所有點的橫坐標伸長到原來的2倍,縱坐標不變

C.向左平移個單位,再把所有點的橫坐標縮短到原來的倍,縱坐標不變

D.向右平移個單位,再把所有點的橫坐標縮短到原來的倍,縱坐標不變

答案:C

2.20xx山東菏澤一模統考,7 要得到函數y=2sin(3x)的圖象,只需將函數y=2sin3x的圖象( )

A.向左平移個單位 B.向右平移個單位

C.向左平移個單位 D.向右平移個單位

答案:D

例2 將y=sinx的圖象怎樣變換得到函數y=2sin(2x+)+1的圖象?

活動:可以用兩種圖象變換得到.但無論哪種變換都是針對字母x而言的由y=sin2x的圖象向左平移個單位長度得到的函數圖象的解析式是y=sin2(x+)而不是y=sin(2x+),把y=sin(x+)的圖象的橫坐標縮小到原來的,得到的函數圖象的解析式是y=sin(2x+),而不是y=sin2(x+).

解:方法一:①把y=sinx的圖象沿x軸向左平移個單位長度,得y=sin(x+)的圖象;②將所得圖象的橫坐標縮小到原來的,得y=sin(2x+)的圖象;③將所得圖象的縱坐標伸長到原來的2倍,得y=2sin(2x+)的圖象;④最后把所得圖象沿y軸向上平移1個單位長度得到y=2sin(2x+)+1的圖象.

方法二:①把y=sinx的圖象的縱坐標伸長到原來的2倍,得y=2sinx的圖象;②將所得圖象的橫坐標縮小到原來的,得y=2sin2x的圖象;③將所得圖象沿x軸向左平移個單位長度,得y=2sin2(x+)的圖象;④最后把圖象沿y軸向上平移1個單位長度得到y=2sin(2x+)+1的圖象.

點評:三角函數圖象變換是個難點.本例很好地鞏固了本節所學知識方法,關鍵是教師引導學生理清變換思路和各種變換對解析式的影響.

變式訓練

1.將y=sin2x的圖象怎樣變換得到函數y=cos(2x-)的圖象?

解:y=sin2x=cos(-2x)=cos(2x-).

在y=cos(2x-)中以x-a代x,有y=cos[2(x-a)-]=cos(2x-2a-).根據題意,有2x-2a-=2x-,得a=-.

所以將y=sin2x的圖象向左平移個單位長度可得到函數y=cos(2x-)的圖象.

2.如何由函數y=3sin(2x+)的圖象得到函數y=sinx的圖象?

方法一:y=3sin(2x+)y=sin(2x+)

y=sin(x+)y=sinx.

方法二:y=3sin(2x+)=3sin2(x+)y=3sin2x

y=sin2xy=sinx.

3.20xx山東高考,4 要得到函數y=sinx的圖象,只需將函數y=cos(x-)的圖象( )

A.向右平移個單位 B.向右平移個單位

C.向左平移個單位 D.向左平移個單位

答案:A

知能訓練

課本本節練習1、2.

解答:

1.如圖6.

點評:第(1)(2)(3)小題分別研究了參數A、ω、φ對函數圖象的影響,第(4)小題則綜合研究了這三個參數對y=Asin(ωx+φ)圖象的影響.

2.(1)C;(2)B;(3)C.

點評:判定函數y=A1sin(ω1x+φ1)與y=A2sin(ω2x+φ2)的圖象間的關系.為了降低難度,在A1與A2,ω1與ω2,φ1與φ2中,每題只有一對數值不同.

課堂小結

1.由學生自己回顧總結本節課探究的知識與方法,以及對三角函數圖象及三角函數解析式的新的認識,使本節的總結成為學生凝練提高的平臺.

2.教師強調本節課借助于計算機討論并畫出y=Asin(ωx+)的圖象,并分別觀察參數φ、ω、A對函數圖象變化的影響,同時通過具體函數的圖象的變化,領會由簡單到復雜、特殊到一般的化歸思想.

作業

1.用圖象變換的方法在同一坐標系內由y=sinx的圖象畫出函數y=sin(-2x)的圖象.

2.要得到函數y=cos(2x-)的圖象,只需將函數y=sin2x的圖象通過怎樣的變換得到?

3.指出函數y=cos2x+1與余弦曲線y=cosx的關系.

解答:1.∵y=sin(-2x)=sin2x,作圖過程:

y=sinxy=sin2xy=sin2x.

2.∵y=cos(2x-)=sin[+(2x-)]=sin(2x+)=sin2(x+),

∴將曲線y=sin2x向左平移個單位長度即可.

3.∵y=cos2x+1,

∴將余弦曲線y=cosx上各點的橫坐標縮短到原來的倍,再將所得曲線上所有的點向上平移1個單位長度,即可得到曲線y=cos2x+1.

設計感想

1.本節圖象較多,學生活動量大,因此本節設計的主要指導思想是充分利用信息技術工具,從整體上探究參數φ、ω、A對函數y=Asin(ωx+φ)圖象整體變化的影響.這符合新課標精神,符合教育課改新理念.現代教育要求學生在富有的學習動機下主動學習,合作探究,教師僅是學生主動學習的激發者和引導者.

2.對于函數y=sinx的圖象與函數y=Asin(ωx+φ)的圖象間的變換,由于“平移變換”與“伸縮變換”在“順序”上的差別,直接會對圖象平移量產生影響,這點也是學習三角函數圖象變換的難點所在,設計意圖旨在通過對比讓學生領悟它們的異同.

3.學習過程是一個認知過程,學生內部的認知因素和學習情景的因素是影響學生認知結構的變量.如果學生本身缺乏學習動機和原有的認知結構,外部的變量就不能發揮它們的作用,但外部變量所提供的刺激也能使內部能力引起學習.

(設計者:張云全)

第2課時

導入新課

思路1.(直接導入)上一節課中,我們分別探索了參數φ、ω、A對函數y=Asin(ωx+φ)的圖象的影響及“五點法”作圖.現在我們進一步熟悉掌握函數y=Asin(ωx+φ)(其中A>0,ω>0,φ≠0)的圖象變換及其物理背景.由此展開新課.

思路2.(復習導入)請同學們分別用圖象變換及“五點作圖法”畫出函數y=4sin(x-)的簡圖,學生動手畫圖,教師適時的點撥、糾正,并讓學生回答有關的問題.在學生回顧與復習上節所學內容的基礎上展開新課.

推進新課

新知探究

提出問題

①在上節課的學習中,用“五點作圖法”畫函數y=Asin(ωx+φ)的圖象時,列表中最關鍵的步驟是什么?

②(1)把函數y=sin2x的圖象向_____平移_____個單位長度得到函數y=sin(2x-)的圖象;(2)把函數y=sin3x的圖象向_______平移_______個單位長度得到函數y=sin(3x+)的圖象;(3)如何由函數y=sinx的圖象通過變換得到函數y=sin(2x+)的圖象?

③將函數y=f(x)的圖象上各點的橫坐標伸長到原來的2倍,再向左平移個單位長度,所得到的曲線是y=sinx的圖象,試求函數y=f(x)的解析式.

對這個問題的求解現給出以下三種解法,請說出甲、乙、丙各自解法的正誤.(多媒體出示各自解法)

甲生:所給問題即是將y=sinx的圖象先向右平移個單位長度,得到y=sin(x-)的圖象,再將所得的圖象上所有點的橫坐標縮短到原來的,得到y=sin(2x-),即y=cos2x的圖象,∴f(x)=cos2x.

乙生:設f(x)=Asin(ωx+φ),將它的圖象上各點的橫坐標伸長到原來的2倍,得到y=Asin(x+φ)的圖象,再將所得的圖象向左平移個單位長度,得到y=Asin(x++φ)=sinx,∴A=,=1,+φ=0,

即A=,ω=2,φ=-.∴f(x)=sin(2x-)=cos2x.

丙生:設f(x)=Asin(ωx+φ),將它的圖象上各點的橫坐標伸長到原來的2倍,得到y=Asin(x+φ)的圖象,再將所得的圖象向左平移個單位長度,得到y=Asin[(x+)+φ]=Asin(x++φ)= sinx,

∴A=,=1,+φ=0.

解得A=,ω=2,φ=-,

∴f(x)=sin(2x-)=cos2x.

活動:問題①,復習鞏固已學三種基本變換,同時為導入本節課重、難點創設情境.讓學生回答并回憶A、ω、φ對函數y=Asin(ωx+φ)圖象變化的影響.引導學生回顧“五點作圖法”,既復習了舊知識,又為學生準確使用本節課的工具提供必要的保障.

問題②,讓學生通過實例綜合以上兩種變換,再次回顧比較兩種方法平移量的區別和導致這一現象的根本原因,以此培養訓練學生變換的逆向思維能力,訓練學生對變換實質的理解及使用誘導公式的綜合能力.

問題③,甲生的解法是考慮以上變換的“逆變換”,即將以上變換倒過來,由y=sinx變換到y=f(x),解答正確.乙、丙兩名同學都是采用代換法,即設y=Asin(ωx+φ),然后按題設中的變換得到兩次變換后圖象的函數解析式,這種思路清晰,但值得注意的是:乙生的解答過程中存在實質性的錯誤,就是將y=Asin(x+φ)的圖象向左平移個單位長度時,把y=Asin(x+φ)函數中的自變量x變成x+,應該變換成y=Asin[(x+)+φ],而不是變換成y=Asin(x++φ),雖然結果一樣,但這是巧合,丙同學的解答是正確的

三角函數圖象的“逆變換”一定要注意其順序,比如甲生解題的過程中如果交換了順序就會出錯,故在對這種方法不是很熟練的情況下,用丙同學的解法較合適(即待定系數法).平移變換是對自變量x而言的,比如乙同學的變換就出現了這種錯誤.

討論結果:①將ωx+φ看作一個整體,令其分別為0, ,π, ,2π.

②(1)右, ;(2)左, ;(3)先y=sinx的圖象左移,再把所有點的橫坐標壓縮到原來的倍(縱坐標不變).

③略.

提出問題

①回憶物理中簡諧運動的相關內容,并閱讀本章開頭的簡諧運動的圖象,你能說出簡諧運動的函數關系嗎?

②回憶物理中簡諧運動的相關內容,回答:振幅、周期、頻率、相位、初相等概念與A、ω、φ有何關系.

活動:教師引導學生閱讀并適時點撥.通過讓學生回憶探究,建立與物理知識的聯系,了解常數A、ω、φ與簡諧運動的某些物理量的關系,得出本章開頭提到的“簡諧運動的圖象”所對應的函數解析式有如下形式:y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.物理中,描述簡諧運動的物理量,如振幅、周期和頻率等都與這個解析式中的常數有關:A就是這個簡諧運動的振幅,它是做簡諧運動的物體離開平衡位置的最大距離;這個簡諧運動的周期是T=,這是做簡諧運動的物體往復運動一次所需要的時間;這個簡諧運動的頻率由公式f==給出,它是做簡諧運動的物體在單位時間內往復運動的次數;ωx+φ稱為相位;x=0時的相位φ稱為初相.

討論結果:①y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.

②略.

應用示例

例1 圖7是某簡諧運動的圖象.試根據圖象回答下列問題:

(1)這個簡諧運動的振幅、周期和頻率各是多少?

(2)從O點算起,到曲線上的哪一點,表示完成了一次往復運動?如從A點算起呢?

(3)寫出這個簡諧運動的函數表達式.

圖7

活動:本例是根據簡諧運動的圖象求解析式.教師可引導學生再次回憶物理學中學過的相關知識,并提醒學生注意本課開始時探討的知識,思考y=Asin(ωx+φ)中的參數φ、ω、A在圖象上是怎樣反映的,要解決這個問題,關鍵要抓住什么.關鍵是搞清φ、ω、A等參數在圖象上是如何得到反映的讓學生明確解題思路,是由形到數地解決問題,學會數形結合地處理問題.完成解題后,教師引導學生進行反思學習過程,概括出研究函數y=Asin(ωx+φ)的圖象的思想方法,找兩名學生闡述思想方法,教師作點評、補充.

解:(1)從圖象上可以看到,這個簡諧運動的振幅為2 cm;周期為0.8 s;頻率為.

(2)如果從O點算起,到曲線上的D點,表示完成了一次往復運動;如果從A點算起,則到曲線上的E點,表示完成了一次往復運動.

(3)設這個簡諧運動的函數表達式為y=Asin(ωx+φ),x∈[0,+∞),

那么A=2;由=0.8,得ω=;由圖象知初相φ=0.

于是所求函數表達式是y=2sinx,x∈[0,+∞).

點評:本例的實質是由函數圖象求函數解析式,要抓住關鍵點.應用數學中重要的思想方法——數形結合的思想方法,應讓學生熟練地掌握這種方法.

變式訓練

函數y=6sin(x-)的振幅是,周期是____________,頻率是____________,初相是___________,圖象最高點的坐標是_______________.

解:6 8π (8kπ+,6)(k∈Z)

例2 若函數y=Asin(ωx+φ)+B(其中A>0,ω>0)在其一個周期內的圖象上有一個最高點(,3)和一個最低點(,-5),求這個函數的解析式.

活動:讓學生自主探究題目中給出的條件,本例中給出的實際上是一個圖象,它的解析式為y=Asin(ωx+φ)+B(其中A>0,ω>0),這是學生未遇到過的教師應引導學生思考它與y=Asin(ωx+φ)的圖象的關系,它只是把y=Asin(ωx+φ)(其中A>0,ω>0)的圖象向上(B>0)或向下(B<0)平移|B|個單位.由圖象可知,取最大值與最小值時相應的x的值之差的絕對值只是半個周期.這里φ的確定學生會感到困難,因為題目中畢竟沒有直接給出圖象,不像例1那樣能明顯地看出來,應告訴學生一般都會在條件中注明|φ|

解:由已知條件,知ymax=3,ymin=-5,

則A=(ymax-ymin)=4,B= (ymax+ymin)=-1,=-=.

∴T=π,得ω=2.

故有y=4sin(2x+φ)-1.

由于點(,3)在函數的圖象上,故有3=4sin(2×+φ)-1,

即sin(+φ)=1.一般要求|φ|

故所求函數的解析式為y=4sin(2x+)-1.

點撥:這是數形結合的又一典型應用,應讓學生明了,題中無圖但腦中應有圖或根據題意畫出草圖,結合圖象可直接求得A、ω,進而求得初相φ,但要注意初相φ的確定.求初相也是這節課的一個難點.

變式訓練

已知函數y=Asin(ωx+φ)(其中A>0,ω>0)一個周期的圖象如圖8所示,求函數的解析式.

解:根據“五點法”的作圖規律,認清圖象中的一些已知點屬于五點法中的哪一點,而選擇對應的方程ωxi+φ=0,,π,,2π(i=1,2,3,4,5),得出φ的值.

方法一:由圖知A=2,T=3π,

由=3π,得ω=,∴y=2sin(x+φ).

由“五點法”知,第一個零點為(,0),

∴·+φ=0葒=-,

故y=2sin(x-).

方法二:得到y=2sin(x+φ)同方法一.

由圖象并結合“五點法”可知,(,0)為第一個零點,(,0)為第二個零點.

∴·+φ=π葒=.

∴y=2sin(x-).

點評:要熟記判斷“第一點”和“第二點”的方法,然后再利用ωx1+φ=0或ωx2+φ=π求出φ.

2.20xx海南高考,3函數y=sin(2x-)在區間[,π]上的簡圖是( )

圖9

答案:A

知能訓練

課本本節練習3、4.

3.振幅為,周期為4π,頻率為.先將正弦曲線上所有的點向右平行移動個單位長度,再在縱坐標保持不變的情況下將各點的橫坐標伸長到原來的2倍,最后在橫坐標保持不變的情況下將各點的縱坐標縮短到原來的倍.

點評:了解簡諧運動的物理量與函數解析式的關系,并認識函數y=Asin(ωx+φ)的圖象與正弦曲線的關系.

4..把正弦曲線在區間[,+∞)的部分向左平行移動個單位長度,就可得到函數y=sin(x+),x∈[0,+∞)的圖象.

點評:了解簡諧運動的物理量與函數解析式的關系,并認識函數y=sin(x+φ)的圖象與正弦曲線的關系.

課堂小結

1.由學生自己回顧本節學習的數學知識:簡諧運動的有關概念.本節學習的數學方法:由簡單到復雜、特殊到一般、具體到抽象的化歸思想,數形結合思想,待定系數法,數學的應用價值.

2.三角函數圖象變換問題的常規題型是:已知函數和變換方法,求變換后的函數或圖象,這種題目的解題的思路是:如果函數同名則按兩種變換方法的步驟進行即可;如果函數不同名,則將異名函數化為同名函數,且需x的系數相同.左右平移時,如果x前面的系數不是1,需將x前面的系數提出,特別是給出圖象確定解析式y=Asin(ωx+φ)的題型.有時從尋找“五點法”中的第一零點(,0)作為突破口,一定要從圖象的升降情況找準第一零點的位置.

作業

把函數y=cos(3x+)的圖象適當變動就可以得到y=sin(-3x)的圖象,這種變動可以是( )

A.向右平移 B.向左平移 C.向右平移 D.向左平移

解:∵y=cos(3x+)=sin(-3x)=sin[-3(x-)],

∴由y=sin[-3(x-)]向左平移才能得到y=sin(-3x)的圖象.

答案:D

點評:本題需逆推,教師在作業講評時應注意加強學生逆向思維的訓練.如本題中的-3x需寫成-3(x-),這樣才能確保平移變換的正確性.

設計感想

1.本節課符合新課改精神,突出體現了以學生能力的發展為主線,應用啟發式、講述式引導學生層層深入,培養學生自主探索及發現問題、分析問題和解決問題的能力.注重利用非智力因素促進學生的學習,實現數學知識價值、思維價值和人文價值的高度統一.

2.由于本節內容綜合性強,所以本節教案設計的指導思想是:在教師的引導下,讓學生積極、主動地提出問題,自主分析,再合作交流,達到殊途同歸.在思維訓練的過程中,感受數學知識的魅力,成為學習的主人.新課改要求教師在新的教學理念下,要勇于,更要善于把問題拋給學生,激發學生探求知識的強烈欲望和創新意識.教學的目的是以知識為平臺,全面提升學生的綜合能力.

第八篇 高中數學備課教案大全

教學目標

知識目標:初步理解增函數、減函數、函數的單調性、單調區間的概念,并掌握判斷一些簡單函數單調性的方法。

能力目標:啟發學生能夠發現問題和提出問題,學會分析問題和創造地解決問題;通過觀察——猜想——推理——證明這一重要的思想方法,進一步培養學生的邏輯推理能力和創新意識。

德育目標:在揭示函數單調性實質的同時進行辯證唯物主義思想教育。

教學重點:函數單調性的有關概念的理解

教學難點:利用函數單調性的概念判斷或證明函數單調性

教具:多媒體課件、實物投影儀

教學過程:

一、創設情境,導入課題

[引例1]如圖為20xx年黃石市元旦24小時內的氣溫變化圖.觀察這張氣溫變化圖:

問題1:氣溫隨時間的增大如何變化?

問題2:怎樣用數學語言來描述“隨著時間的增大氣溫逐漸升高”這一特征?

[引例2]觀察二次函數

的圖象,從左向右函數圖象如何變化?并總結歸納出函數圖象中自變量x和y值之間的變化規律。

結論:

(1)y軸左側:逐漸下降;y軸右側:逐漸上升;

(2)左側y隨x的增大而減?。挥覀葃隨x的增大而增大。

上面的結論是直觀地由圖象得到的。還有很多函數具有這種性質,因此,我們有必要對函數這種性質作更進一步的一般性的討論和研究。

二、給出定義,剖析概念

①定義:對于函數f(x)的定義域I內某個區間上的任意兩個自變量的值

②單調性與單調區間

若函數y=f(x)在某個區間是增函數或減函數,則就說函數y=f(x)在這一區間具有單調性,這一區間叫做函數y=f(x)的單調區間.此時也說函數是這一區間上的單調函數.由此可知單調區間分為單調增區間和單調減區間。

注意:

(1)函數單調性的幾何特征:在單調區間上,增函數的圖象是上升的,減函數的圖象是下降的。當x1 f(x2)y隨x增大而減小。幾何解釋:遞增函數圖象從左到右逐漸上升;遞減函數圖象從左到右逐漸下降。

(2)函數單調性是針對某一個區間而言的,是一個局部性質。

判斷1:有些函數在整個定義域內是單調的;有些函數在定義域內的部分區間上是增函數,在部分區間上是減函數;有些函數是非單調函數,如常數函數。

判斷2:定義在R上的函數f (x)滿足f (2)> f(1),則函數f (x)在R上是增函數。

函數的單調性是函數在一個單調區間上的“整體”性質,不能用特殊值代替。

訓練:畫出下列函數圖像,并寫出單調區間:

三、范例講解,運用概念

具有任意性

例1:如圖,是定義在閉區間[-5,5]上的函數出函數的單調區間,以及在每一單調區間上,函數的圖象,根據圖象說是增函數還減

注意:

(1)函數的單調性是對某一個區間而言的,對于單獨的一點,由于它的函數值是唯一確定的常數,因而沒有增減變化,所以不存在單調性問題。

(2)在區間的端點處若有定義,可開可閉,但在整個定義域內要完整。

例2:判斷函數f (x) =3x+2在R上是增函數還是減函數?并證明你的結論。

分析證明中體現函數單調性的定義。

利用定義證明函數單調性的步驟。

第九篇 高中數學備課教案大全

由于定義就是從反函數角度給出的,所以下面我們的研究就從這個角度出發.如從定義中你能了解對數函數的什么性質嗎?最初步的認識是什么?

教師可提示學生從反函數的三定與三反去認識,從而找出對數函數的定義域為 ,對數函數的值域為 ,且底數 就是指數函數中的 ,故有著相同的限制條件 .

在此基礎上,我們將一起來研究對數函數的圖像與性質.

提問學生打算用什么方法來畫函數圖像?學生應能想到利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖.

由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

具體操作時,要求學生做到:

(1) 指數函數 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).

(2) 畫出直線 .

(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而 的圖像在翻折時可提示學生分兩段翻折,在左側的先翻,然后再翻在 右側的部分.

學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出

和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:

2. 草圖.

教師畫完圖后再利用投影儀將 和 的圖像畫在同一坐標系內,如圖:

然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)

由以上兩條可說明圖像位于 軸的右側.

(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.

(4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.

(5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的

當 時,在 上是減函數,即圖像是下降的.

之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:

學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.

對圖像和性質有了一定的了解后,一起來看看它們的應用.

第十篇 高中數學備課教案大全

理解任意角的概念(包括正角、負角、零角) 與區間角的概念.

會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區間角的集合的書寫.

1. 提高學生的推理能力;

終邊相同角的集合的表示;區間角的集合的書寫.

①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角.

②角的第二種定義是角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.

角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.

④注意:

⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;

⑵零角的終邊與始邊重合,如果α是零角α =0°;

⑶角的概念經過推廣后,已包括正角、負角和零角.

2.象限角的概念:

①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.

例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的角.

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

終邊相同的角的表示:

所有與角α終邊相同的角,連同α在內,可構成一個集合S={ β | β = α +

k·360° ,

k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和. 注意: ⑴ k∈Z

⑵ α是任一角;

⑶ 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差

360°的整數倍;

⑷ 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

例2.在0°到360°范圍內,找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

⑴-120°;

⑵640°;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.

④終邊相同的角的表示法.

②教材P5練習第1-5題;

③教材P.9習題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,

? k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

故2α是第一、二象限或終邊在y軸的非負半軸上的角. 又k·180°+90°<

各是第幾象限角?

<k·180°+135°(k∈Z) .

<n·360°+135°(n∈Z) ,

當k為偶數時,令k=2n(n∈Z),則n·360°+90°<此時,

<n·360°+315°(n∈Z) ,

當k為奇數時,令k=2n+1 (n∈Z),則n·360°+270°<此時,

理解弧度的意義;了解角的集合與實數集R之間的可建立起一一對應的關系;熟記特殊角的弧度數.

能正確地進行弧度與角度之間的換算,能推導弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題

通過新的度量角的單位制(弧度制)的引進,培養學生求異創新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學重點

一、復習角度制:

初中所學的角度制是怎樣規定角的度量的? 規定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.

由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進制的,運用起來不太方便.在數學和其他許多科學研究中還要經常用到另一種度量角的制度—弧度制,它是如何定義呢?

我們規定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實際運算中,常常將rad單位省略.

3.思考:

(1)一定大小的圓心角?所對應的弧長與半徑的比值是否是確定的?與圓的半徑大小有關嗎?

③正角的弧度數是一個正數.

④負角的弧度數是一個負數.

⑤零角的弧度數是零.

⑥角α的弧度數的絕對值|α|= .

① 用弧度數表示角時,常常把弧度數寫成多少π 的形式, 不必寫成小數.

② 弧度與角度不能混用.

弧長等于弧所對應的圓心角(的弧度數)的絕對值與半徑的積.

例1.把67°30’化成弧度.

例2.把? rad化成度.

(2)tan1.5.

②教材P9練習第1、2、3、6題;

③教材P10面7、8題及B2、3題.

第十一篇 高中數學備課教案大全

一、教學目標:

知識與技能:了解直線參數方程的`條件及參數的意義

過程與方法:能根據直線的幾何條件,寫出直線的參數方程及參數的意義

情感、態度與價值觀:通過觀察、探索、發現的創造性過程,培養創新意識。

二重難點:教學重點:曲線參數方程的定義及方法

教學難點:選擇適當的參數寫出曲線的參數方程.

三、教學方法:啟發、誘導發現教學.

四、教學過程

(一)、復習引入:

1.寫出圓方程的標準式和對應的參數方程。

圓參數方程 (為參數)

(2)圓參數方程為: (為參數)

2.寫出橢圓參數方程.

3.復習方向向量的概念.提出問題:已知直線的一個點和傾斜角,如何表示直線的參數方程?

(二)、講解新課:

1、問題的提出:一條直線L的傾斜角是,并且經過點P(2,3),如何描述直線L上任意點的位置呢?

如果已知直線L經過兩個

定點Q(1,1),P(4,3),

那么又如何描述直線L上任意點的

位置呢?

2、教師引導學生推導直線的參數方程:

(1)過定點傾斜角為的直線的

參數方程

(為參數)

【辨析直線的參數方程】:設M(x,y)為直線上的任意一點,參數t的幾何意義是指從點P到點M的位移,可以用有向線段數量來表示。帶符號.

(2)、經過兩個定點Q,P(其中)的直線的參數方程為

。其中點M(X,Y)為直線上的任意一點。這里參數的幾何意義與參數方程(1)中的t顯然不同,它所反映的是動點M分有向線段的數量比。當時,M為內分點;當且時,M為外分點;當時,點M與Q重合。

(三)、直線的參數方程應用,強化理解。

1、例題:

學生練習,教師準對問題講評。反思歸納:1、求直線參數方程的方法;2、利用直線參數方程求交點。

2、鞏固導練:

補充:1、直線與圓相切,那么直線的傾斜角為(A)

A.或 B.或 C.或 D.或

2、(坐標系與參數方程選做題)若直線與直線(為參數)垂直,則 .

解:直線化為普通方程是,

該直線的斜率為,

直線(為參數)化為普通方程是,

該直線的斜率為,

則由兩直線垂直的充要條件,得, 。

(四)、小結:(1)直線參數方程求法;(2)直線參數方程的特點;(3)根據已知條件和圖形的幾何性質,注意參數的意義。

(五)、作業:

補充:設直線的參數方程為(t為參數),直線的方程為y=3x+4則與的距離為_______

【考點定位】本小題考查參數方程化為普通方程、兩條平行線間的距離,基礎題。

解析:由題直線的普通方程為,故它與與的距離為。

五、教學反思:

第十二篇 高中數學備課教案大全

本節內容是學生在學習了乘法原理、排列、排列數公式和加法原理以后的知識,學生已經掌握了排列問題,并且對順序與排列的關系已經有了一個比較清晰的認識.因此關鍵是排列與組合的區別在于問題是否與順序有關.與順序有關的是排列問題,與順序無關是組合問題,順序對排列、組合問題的求解特別重要.排列與組合的區別,從定義上來說是簡單的,但在具體求解過程中學生往往感到困惑,分不清到底與順序有無關系,指導學生根據生活經驗和問題的內涵領悟其中體現出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.

1.理解組合的意義,掌握組合數的計算公式;

組合概念的理解和組合數公式;組合與排列的區別.

那么請問:平面上有7個點,問以這7點中任何兩個為端點,構成有向線段有幾條?

其實亦可用另一種方法解決,這就是組合.

一般地,從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.

從 個不同元素中取出 個元素的所有組合的個數,叫做從 個不同元素中取出 個元素的組合數.用符號 表示.

= = 這是為什么呢?

因為 構成有向線段的問題可分成2步來完成:

第一步,先從7個點中選2個點出來,共有 種選法;

第二步,將選出的2個點做一個排列,有 種次序;

用計算器求 、 、 、

可發現 = =

由此猜想:

用實際例子說明:比如要從50人中挑選4個出來參加迎春長跑的選擇方案有 ,就相當于挑46個人不參加長跑的選擇方案 一樣.“取法”與“剩法”是“一 一對應”的.

當m=n時,

此性質作用:當 時,計算 可變為計算 ,能夠使運算簡化.

可解釋為:從 這n 1個不同元素中取出m個元素的組合數是 ,這些組合可以分為兩類:一類含有元素 ,一類不含有 .含有 的組合是從 這n個元素中取出m (1個元素與 組成的,共有 個;不含有 的組合是從 這n個元素中取出m個元素組成的,共有 個.根據加法原理,可以得到組合數的另一個性質.在這里,主要體現從特殊到一般的歸納思想,“含與不含其元素”的分類思想.

【說明】1( 公式特征:下標相同而上標差1的兩個組合數之和,等于下標比原下標多1而上標與高的相同的一個組合數.

2( 此性質的作用:恒等變形,簡化運算.在今后學習“二項式定理”時,我們會看到它的主要應用.

例2、應用題:

(2)平均分給3人;

(3)若平均分為3份;

(4)甲分2本,乙分7本,丙分6本;

(5)1人2本,1人7本,1人6本.

指導學生根據生活經驗和問題的內涵領悟其中體現出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.

能列舉出某種方法時,讓學生通過交換元素位置的辦法加以鑒別.

學生易于辨別組合、全排列問題,而排列問題就是先組合后全排列.在求解排列、組合問題時,可引導學生找出兩定義的關系后,按以下兩步思考:首先要考慮如何選出符合題意要求的元素來,選出元素后再去考慮是否要對元素進行排隊,即第一步僅從組合的角度考慮,第二步則考慮元素是否需全排列,如果不需要,是組合問題;否則是排列問題.

排列、組合問題大都來源于同學們生活和學習中所熟悉的情景,解題思路通常是依據具體做事的過程,用數學的原理和語言加以表述.也可以說解排列、組合題就是從生活經驗、知識經驗、具體情景的出發,正確領會問題的實質,抽象出“按部就班”的處理問題的過程.據觀察,有些同學之所以學習中感到抽象,不知如何思考,并不是因為數學知識跟不上,而是因為平時做事、考慮問題就缺乏條理性,或解題思路是自己主觀想象的做法(很可能是有悖于常理或常規的做法).要解決這個問題,需要師生一道在分析問題時要根據實際情況,怎么做事就怎么分析,若能借助適當的工具,模擬做事的過程,則更能說明問題.久而久之,學生的邏輯思維能力將會大大提高.

在學習過程中,從排列問題引入,隨即自然地過渡到組合問題.由此讓學生對于排列與組合兩者的異同有深刻理解,并能自如地進行判斷.

本節課在教學技術上通過多媒體課件大大縮短了教師板書抄題的時間,讓學生能夠更加連貫的思考以及探索問題.

在例題的設計上從最基本的組合數公式的利用,到簡單的應用題,再到組合中較難的分組分配以及平均不平均分配問題的訓練,由淺入深,層層遞進,以積極發揮課堂教學的基礎型和研究型功能,培養學生的基礎性學力和發展性學力.

在課堂教學中教師遵循“以學生為主體”的思想,鼓勵學生善于觀察和發現;鼓勵學生積極思考和探究;鼓勵學生大膽猜想,努力營造一個民主和諧、平等交流的課堂氛圍,采取對話式教學,調動學生學習的積極性,激發學生學習的熱情,使學生開闊思維空間,讓學生積極參與教學活動,提高學生的數學思維能力.

第十三篇 高中數學備課教案大全

一、自我介紹

我姓x,是你們的數學老師,因為是數學老師所以在自我介紹的時候喜歡給出自己的數字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。

二、相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節課我們不急于上新課,我想和大家聊一聊數學,一起來思考為什么要學習數學及如何學好數學這兩個問題。

(一)為什么要學習數學

相信高一的第一節課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數學老師我表達上不如文科老師迂回婉轉和風趣幽默,我們更喜歡用數字說明問題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數學系為北大第一系,這種傳統一直保持到現在。為什么數學系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數學是有用的,數學有助于提高能力。

數學家華羅庚在《人民日報》精彩描述了數學在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無處不有重要貢獻。

問題1:大家知道海王星是怎么發現的,冥王星又是怎么被請出十大行星行列的?

海王星的發現是在數學計算過程中發現的,天文望遠鏡的觀測只是驗證了人們的推論。

1812年,法國人布瓦德在計算天王星的運動軌道時,發現理論計算值同觀測資料發生了一系列誤差。這使許多天文學家紛紛致力這個問題的研究,進而發現天王星的脫軌與一個未知的引力的存在相關。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的'一封快信。發信人就是勒威耶。信中,勒威耶預告了一顆以往沒有發現的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發現了一顆新的8等星。又過了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學慣例,用神話里的名字把這顆星命名為"海王星"。

1930年美國天文學家湯博發現冥王星,當時錯估了冥王星的質量,以為冥王星比地球還大,所以命名為大行星。然而,經過近30年的進一步觀測和計算,發現它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,"冥王星是大行星"早已被寫入教科書,以后也就將錯就錯了。經過多年的爭論,國際天文學聯合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據國際天文學聯合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數量將由九顆減為八顆。事實上,位居太陽系九大行星末席70多年的冥王星,自發現之日起地位就備受爭議。

馬克思說:"一種科學只有在成功運用數學時,才算達到了真正完善的地步。"正因為數學是日常生活和進一步學習必不可少的基礎和工具,一切科學到了最后都歸結為數學問題。

其實在我們的周圍有很多事情都是可以用數學可以來解決的,無非很多人都沒有用數學的眼光來看待。

問題2:徒認為上帝是萬能的。你們認為呢?如何來證明你的結論呢?(讓同學發言)

我的觀點:上帝不是萬能的。為什么呢?仔細聽我講來。

證明:(反證法)假如上帝是萬能的

那么他能夠制作出一塊無論什么力量都搬不動的石頭

根據假設,既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭

這與"無論什么力量都搬不動的石頭"相矛盾

所以假設不成立

所以上帝不是萬能的。問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人還說公平嗎?

當然,我們學習的數學只是數學學科體系中很基礎,很小的一部分?,F在課本上學的未必能直接應用于生活,主要是為以后學習更高層次的理科打好基礎,同時,也為了掌握一些數學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:"讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數學使人聰明…",也有人形象地稱數學是思維的體操。下面我們通過具體的例子來體驗一下某些數學思想方法和思維方式。

故事一:據說國際象棋是古印度的一位宰相發明的。國王很欣賞他的這項發明,問他的宰相要什么賞賜。聰明的宰相說,"我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。"國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發現即使把全國所有的谷子抬來也遠遠不夠。

人們通常憑借自己掌握的數學知識耍些小聰明,使問題妙不可言。

數學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應該先放還是后放才有必勝的把握。

數學思想:退到最簡單、最特殊的地方。

故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展-圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現象中受到啟發,很好地解決了這一問題,你認為他會怎么做呢?

渡邊的成功之處就在于思維角度新,從問題的側面輕巧取勝。也正體現了數學學習中經常用到的發散式思維。在數學學習中,既要有集中式思維又要有發散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯系思維方式,表現為對解題方法的模仿和繼承;而發散式思維即對問題開拓、創新,表現為對問題舉一反三,觸類旁通。在解決具體問題中,我們應該將兩種思維方式相結合。

學數學有利于培養人的思維品質:結構意識、整體意識、抽象意識、化歸意識、優化意識、反思意識,盡管數學在培養學生的這些思維品質方面和其他學科存在著交集,但數學在其中的地位是無法被代替的??傊?,學習數學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創造……

(二)如何學好數學

高中數學的內容多,抽象性、理論性強,高中很注重自學能力的培養的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學能力的培養,誰的自學能力強,那么在一定的程度上影響著你的成績以及你將來你發展的前途。同時要注意以下幾點:

第一:對數學學科特點有清楚的認識

主編寄語里是這樣描述數學的特征的:數學是自然的。數學的概念、方法、思想都是人類長期實踐中自然發展形成的,以數域的發展為例,從自然數到有理數到實數再到復數,都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產生的背景,它的形成過程以及它的應用,讓數學顯得合情合理,渾然天成。數學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數學規則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是"想當然"的話,那就學不下去了。

第二:要改變一個觀念。

有人會說自己的基礎不好。那我問下什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎。所以要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現在你們是在同一個起跑線上的,無所謂基礎好不好。過去的幾年里我分別帶過五十一中和一中的學生,兩邊學生的課堂感覺差不多,應該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因為課堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學外課自主時間的投入太少,學習習慣不太好。

第三:學數學要摸索自己的學習方法

學習、掌握并能靈活應用數學的途徑有千萬條,每個人都可以有與眾不同的數學學習方法。做習題、用數學解決各種問題是必需的,理解、學會證明、領會思想、掌握方法也是必需的。此外,還要發揮問題的作用,學會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學習。同時,注意前后知識的銜接,類比地學、聯系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。

第四:養成良好的學習習慣(與一中學生相比較)

㈠課前預習。怎樣預習呢?就是自己在上課之前把內容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。

㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。

㈢關于作業。絕對不允許有抄作業的情況發生。如果我發現有誰抄作業,那么既然他這樣喜歡抄,我就要你把當天的作業多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業這樣不是幫助他而是害他,這個道理大家應該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。二、向老師請教,要養成多想多問的習慣。我的辦公室在二樓二號,歡迎大家前來交流

㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數學成績提高。

好的開始是成功的一半,新的學期開始了,請大家調整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。

第十四篇 高中數學備課教案大全

2023高中數學教案大全精選篇1

一、教材的地位和作用

本節課是 “空間幾何體的三視圖和直觀圖”的第一課時,主要內容是投影和三視圖,這部分知識是立體幾何的基礎之一,一方面它是對上一節空間幾何體結構特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎和訓練學生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內容之一,常常結合給出的三視圖求給定幾何體的表面積或體積設置在選擇或填空中。同時,三視圖在工程建設、機械制造中有著廣泛應用,同時也為學生進入高一層學府學習有很大的幫助。所以在人們的日常生活中有著重要意義。

二、教學目標

(1) 知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結構特征。

(2)過程與方法:通過直觀感知,操作確認,提高學生的空間想象能力、幾何直觀能力,培養學生的應用意識。

(3)情感、態度與價值觀:讓感受數學就在身邊,提高學生學習立體幾何的興趣,培養學生相互交流、相互合作的精神。

三、設計思路

本節課的主要任務是引導學生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節課的設計思路。通過大量的多媒體直觀,實物直觀使學生獲得了對三視圖的感性認識,通過學生的觀察思考,動手實踐,操作練習,實現認知從感性認識上升為理性認識。培養學生的空間想象能力,幾何直觀能力為學習立體幾何打下基礎。

教學的重點、難點

(一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應遵循的“長對正、高平齊、寬相等”的原則。

(二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。

四、學生現實分析

本節首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學生具有這方面的直接經驗和基礎。投影和三視圖雖為高中新增內容,但學

生在初中有一定基礎,在七年級上冊 “從不同方向看”的基礎上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學習和認識了柱、錐、臺等幾何體的概念后,學生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側視圖、俯視圖的概念。這些概念的變化也說明了學生年齡特點和思維差異

五、教學方法

(1)教學方法及教學手段

針對本節課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學法、啟導發現法。

在教學中,通過創設問題情境,充分調動學生學習的積極性和主動性,并引導啟發學生動眼、動腦、動手.同時采用多媒體的教學手段,加強直觀性和啟發性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。

(2)學法指導

力爭在新課程要求的大背景下組織教學,為學生創設良好的問題情境,留給學生充分的思考空間,在學生的辯證和討論前提下,發揮教師的概括和引領的作用。

六、教學過程

(一)創設情境,引出課題

通過攝影作品及汽車設計圖紙引出問題

1.照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對線條畫法的基本原理是一個幾何問題,我們需要學習這方面的知識。

2.在建筑、機械等工程中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術上這也是一個幾何問題,你想知道這方面的基礎知識嗎?

設計意圖:通過攝影作品及汽車設計圖紙的展示引出問題1,2,從貼近生活的實例入手,給學生以視覺沖擊,引領學生進入本節課的內容。

引出課題:投影與三視圖

知識探究(一):中心投影與平行投影

光是直線傳播的,一個不透明物體在光的照射下,在物體后面的屏幕上會留下這個物體的影子,這種現象叫做投影。其中的光線叫做投影線,留下物體影子的屏幕叫做投影面。

思考1:不同的光源發出的光線是有差異的,其中燈泡發出的光線與手電筒發出的光線有什么

不同?

思考2:我們把光由一點向外散射形成的投影叫做中心投影,把在一束平行光線照射下形成的投影叫做平行投影,那么用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?

思考3:用燈泡照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關系?當物體與燈泡的距離發生變化時,影子的大小會有什么不同?

思考4:用手電筒照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關系?當物體與手電筒的距離發生變化時,影子的大小會有變化嗎?

思考5:在平行投影中,投影線正對著投影面時叫做正投影,否則叫做斜投影.一個與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否發生變化?

思考6:一個與投影面不平行的平面圖形,在正投影和斜投影下的形狀、大小是否發生變化? 師生活動:學生思考,討論,教師歸納總結。

設計意圖:講解投影,投影線,投影面,讓學生了解投影式如何形成的。通過六個思考層層深入,學生在思考討論的過程中總結出投影的分類及每種投影的特點。

知識探究(二):柱、錐、臺、球的三視圖

把一個空間幾何體投影到一個平面上,可以獲得一個平面圖形。但只有一個平面圖形難以把握幾何體的全貌,因此我們需要從多個角度進行投影,這樣就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側面和上面。

從不同的角度看建筑

問題1:要很好地描繪這幢房子,需要從哪些方向去看?

問題2:如果要建造房子,你是工程師,需要給施工員提供哪幾種圖紙?

設計意圖:通過觀察大樓的圖片,提出問題1,2,這種設計更易于讓學生接受,說明數學與生活密不可分。

給出三視圖的含義:

(1)光線從幾何體的前面向后面正投影得到的投影圖,叫做幾何體的正視圖;

(2)光線從幾何體的左面向右面正投影得到的投影圖,叫做幾何體的側視圖;

(3)光線從幾何體的上面向下面正投影得到的投影圖,叫做幾何體的俯視圖;

(4)幾何體的正視圖、側視圖、俯視圖統稱為幾何體的三視圖。

思考1 :正視圖、側視圖、俯視圖分別是從幾何體的哪三個角度觀察得到的幾何體的正投影圖?它們都是平面圖形還是空間圖形?

思考2 :如圖,設長方體的長、寬、高分別為a、b、c ,那么其三視圖分別是什么?

一個幾何體的正視圖和側視圖的高度一樣,俯視圖和正視圖的的長度一樣,側視圖和俯視圖的寬度一樣。

思考3 :圓柱、圓錐、圓臺的三視圖分別是什么?

思考4 :一般地,一個幾何體的正視圖、側視圖和俯視圖的長度、寬度和高度有什么關系? 師生活動:分小組討論,動手操作來完成思考題。

設計意圖:通過多媒體的動態演示,對學生的結論進行驗證,大概花15分鐘的時間來完成這部分的教學。學生自主歸納總結將本節課的重點化解。

長對正,高平齊,寬相等

2023高中數學教案大全精選篇2

教學目標

(1)掌握 與 ( )型的絕對值不等式的解法.

(2)掌握 與 ( )型的絕對值不等式的解法.

(3)通過用數軸來表示含絕對值不等式的解集,培養學生數形結合的能力;

(4)通過將含絕對值的不等式同解變形為不含絕對值的不等式,培養學生化歸的思想和轉化的能力;

教學重點: 型的不等式的解法;

教學難點:利用絕對值的意義分析、解決問題.

教學過程設計

教師活動

學生活動

設計意圖

一、導入新課

【提問】正數的絕對值什么?負數的絕對值是什么?零的絕對值是什么?舉例說明?

【概括】

口答

絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.

二、新課

【導入】2的絕對值等于幾?-2的絕對值等于幾?絕對值等于2的數是誰?在數軸上表示出來.

【講述】求絕對值等于2的數可以用方程來表示,這樣的方程叫做絕對值方程.顯然,它的解有二個,一個是2,另一個是-2.

【提問】如何解絕對值方程.

【設問】解絕對值不等式,由絕對值的意義你能在數軸上畫出它的解嗎?這個絕對值不等式的解集怎樣表示?

【講述】根據絕對值的意義,由右面的數軸可以看出,不等式的解集就是表示數軸上到原點的距離小于2的點的集合.

【設問】解絕對值不等式,由絕對值的意義你能在數軸上畫出它的解嗎?這個絕對值不等式的解集怎樣表示?

【質疑】的解集有幾部分?為什么也是它的解集?

【講述】這個集合中的數都比-2小,從數軸上可以明顯看出它們的絕對值都比2大,所以是解集的一部分.在解時容易出現只求出這部分解集,而丟掉這部解集的錯誤.

【練習】解下列不等式:

(1);

(2)

【設問】如果在中的,也就是怎樣解?

【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.

所以,原不等式的解集是

【設問】如果中的是,也就是怎樣解?

【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.

,或,

由得

由得

所以,原不等式的解集是

口答.畫出數軸后在數軸上表示絕對值等于2的數.

畫出數軸,思考答案

不等式的解集表示為

畫出數軸

思考答案

不等式的解集為

或表示為,或

筆答

(1)

(2),或

筆答

筆答

根據絕對值的意義自然引出絕對值方程()的解法.

由淺入深,循序漸進,在()型絕對值方程的基礎上引出()型絕對值方程的解法.

針對解()絕對值不等式學生常出現的情況,運用數軸質疑、解惑.

落實會正確解出與()絕對值不等式的2023高中數學教案大全精選篇3.

在將看成一個整體的關鍵處點撥、啟發,使學生主動地進行練習.

繼續強化將看成一個整體繼續強化解不等式時不要犯丟掉這部分解的錯誤.

三、課堂練習

解下列不等式:

(1);

(2)

筆答

(1);

(2)

檢查2023高中數學教案大全精選篇4落實情況.

四、小結

的解集是;的解集是

解絕對值不等式注意不要丟掉這部分解集.

或型的絕對值不等式,若把看成一個整體一個字母,就可以歸結為或型絕對值不等式的解法.

五、作業

1.閱讀課本含絕對值不等式解法.

2.習題2、3、4

課堂教學設計說明

1.抓住解 型絕對值不等式的關鍵是絕對值的意義,為此首先通過復習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎.

2.在解 與 絕對值不等式中的關鍵處設問、質疑、點撥,讓學生融會貫通的掌握它們解法之間的內在聯系,以達到提高學生解題能力的目的.

3.針對學生解 ( )絕對值不等式容易出現丟掉 這部分解集的錯誤,在教學中應根據絕對值的意義從數軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力.

2023高中數學教案大全精選篇5

教學目標:

(1)理解子集、真子集、補集、兩個集合相等概念;

(2)了解全集、空集的意義,

(3)掌握有關子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養學生的符號表示的能力;

(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

(5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養學生的數學結合的數學思想;

(6)培養學生用集合的觀點分析問題、解決問題的能力.

教學重點:子集、補集的概念

教學難點:弄清元素與子集、屬于與包含之間的區別

教學用具:幻燈機

教學過程設計

(一)導入新課

上節課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識.

【提出問題】(投影打出)

已知 , , ,問:

1.哪些集合表示方法是列舉法.

2.哪些集合表示方法是描述法.

3.將集M、集從集P用圖示法表示.

4.分別說出各集合中的元素.

5.將每個集合中的元素與該集合的關系用符號表示出來.將集N中元素3與集M的關系用符號表示出來.

6.集M中元素與集N有何關系.集M中元素與集P有何關系.

【找學生回答】

1.集合M和集合N;(口答)

2.集合P;(口答)

3.(筆練結合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

5. , , , , , , , (筆練結合板演)

6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經常出現,本節將研究有關兩個集合間關系的問題.

(二)新授知識

1.子集

(1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

記作: 讀作:A包含于B或B包含A

當集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.

性質:① (任何一個集合是它本身的子集)

② (空集是任何集合的子集)

【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.

因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.

(2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

例: ,可見,集合 ,是指A、B的所有元素完全相同.

(3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。

【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B.

【提問】

(1) 寫出數集N,Z,Q,R的包含關系,并用文氏圖表示。

(2) 判斷下列寫法是否正確

① A ② A ③ ④A A

性質:

(1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;

(2)如果 , ,則 .

例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.

解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

【注意】(1)子集與真子集符號的方向。

(2)易混符號

①“ ”與“ ”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如 R,{1} {1,2,3}

②{0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。

如: {0}。不能寫成 ={0}, ∈{0}

例2 見教材P8(解略)

例3 判斷下列說法是否正確,如果不正確,請加以改正.

(1) 表示空集;

(2)空集是任何集合的真子集;

(3) 不是 ;

(4) 的所有子集是 ;

(5)如果 且 ,那么B必是A的真子集;

(6) 與 不能同時成立.

解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;

(2)不正確.空集是任何非空集合的真子集;

(3)不正確. 與 表示同一集合;

(4)不正確. 的所有子集是 ;

(5)正確

(6)不正確.當 時, 與 能同時成立.

例4 用適當的符號( , )填空:

(1) ; ; ;

(2) ; ;

(3) ;

(4)設 , , ,則A B C.

解:(1)0 0 ;

(2) = , ;

(3) , ∴ ;

(4)A,B,C均表示所有奇數組成的集合,∴A=B=C.

【練習】教材P9

用適當的符號( , )填空:

(1) ; (5) ;

(2) ; (6) ;

(3) ; (7) ;

(4) ; (8) .

解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

提問:見教材P9例子

(二) 全集與補集

1.補集:一般地,設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即

.

A在S中的補集 可用右圖中陰影部分表示.

性質: S( SA)=A

如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};

(2)若A={0},則 NA=N;

(3) RQ是無理數集。

2.全集:

如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用 表示.

注: 是對于給定的全集 而言的,當全集不同時,補集也會不同.

例如:若 ,當 時, ;當 時,則 .

例5 設全集 , , ,判斷 與 之間的關系.

解:∵

練習:見教材P10練習

1.填空:

, , ,那么 , .

解: ,

2.填空:

(1)如果全集 ,那么N的補集 ;

(2)如果全集, ,那么 的補集 ( )= .

解:(1) ;(2) .

(三)小結:本節課學習了以下內容:

1.五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)

2.五條性質

(1)空集是任何集合的子集。Φ A

(2)空集是任何非空集合的真子集。Φ A (A≠Φ)

(3)任何一個集合是它本身的子集。

(4)如果 , ,則 .

(5) S( SA)=A

3.兩組易混符號:(1)“ ”與“ ”:(2){0}與

(四)課后作業:見教材P10習題1.2

2023高中數學教案大全精選篇6

教學目標:①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復

合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高

解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大?。寒?

調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞

增,所以loga5.1

板書:

解:Ⅰ)當0

∵5.1loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

∵5.1

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.51,

log0.50.6

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函

數 的單調性比大小,②借用“中間量”間接比大小,③利用對數

函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

2023高中數學教案大全精選篇7

重點難點教學:

1.正確理解映射的概念;

2.函數相等的兩個條件;

3.求函數的定義域和值域。

一.教學過程:

1. 使學生熟練掌握函數的概念和映射的定義;

2. 使學生能夠根據已知條件求出函數的定義域和值域; 3. 使學生掌握函數的三種表示方法。

二.教學內容: 1.函數的定義

設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:

(),yfA

其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()|}fA?叫值域(range)。顯然,值域是集合B的子集。

注意:

① “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x. 2.構成函數的三要素 定義域、對應關系和值域。 3、映射的定義

設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意

一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。

4. 區間及寫法:

設a、b是兩個實數,且a

(1) 滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];

(2) 滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);

5.函數的三種表示方法 ①解析法 ②列表法 ③圖像法

丝袜一区二区三区_日韩av网站电影_中文字幕在线视频日韩_日韩免费在线看_日韩在线观看你懂的_91精品国产综合久久香蕉_日韩精品免费在线播放_91色视频在线导航_欧美在线视频一区二区_欧美性色19p_亚洲影院污污._国产一区二区三区在线视频_yellow中文字幕久久_欧美男插女视频_亚洲韩国青草视频_欧美日韩综合视频
亚洲国产精品日韩专区av有中文| 日韩中文字幕一区二区| 久久精品道一区二区三区| 日韩aaaa| a天堂中文在线官网在线| 亚洲深夜福利视频| 国产传媒日韩欧美成人| 日韩va欧美va亚洲va久久| 久久久久99精品一区| 精品中文字幕在线| 久久久午夜电影| 不卡视频在线| 欧美韩一区二区| 91视视频在线观看入口直接观看www| 成人白浆超碰人人人人| 超碰国产一区| 国产精品激情自拍| 免费亚洲电影在线| 日韩电影在线观看中文字幕| 精品亚洲精品福利线在观看| 国产精品美女久久久久aⅴ国产馆| 亚洲三级在线播放| 成人免费黄色| 成人精品福利视频| 91美女主播在线视频| 欧美jizzhd欧美| 久久精品国产第一区二区三区最新章节| 久久久久久久一区二区| 日本大胆在线观看| 日韩二区三区四区| 国产精品一区二区日韩| 欧美日韩的一区二区| 欧美极品一区| 欧美三区不卡| 久久久影院免费| 成人黄色免费短视频| 欧美一二三四区在线| 在线观看午夜av| 久久丝袜美腿综合| 欧美在线你懂的| 亚洲区免费影片| 国内成人精品一区| 欧美精品一区二区三区四区五区| 日韩主播视频在线| 日韩电影免费网址| 亚洲日本天堂| 亚洲调教一区| 91超碰中文字幕久久精品| 午夜老司机精品| 亚洲精品久久久久国产| 亚洲精品二区| 亚洲精品成人三区| 国产精品扒开腿做爽爽爽男男| 91麻豆精品久久久久蜜臀| 美女在线视频一区| 成人免费直播| 亚洲日本成人在线观看| 国产成人精品在线观看| 成人高清电影网站| 蜜桃麻豆www久久国产精品| 久久99精品久久久久久野外| 欧洲视频一区| 日韩av一区二区在线| 国产乱码精品一区二区亚洲| 一本一本久久a久久精品牛牛影视| 香蕉成人在线| 日韩成人综合| 欧美成人dvd在线视频| 在线综合色站| 亚洲精品v日韩精品| 国内精品久久久久久久影视简单| 欧美xxxbbb| 一本色道久久综合亚洲aⅴ蜜桃| 欧美在线二区| 中文字幕av一区二区三区四区| 久久在线精品| 精品视频一区 二区 三区| 韩国成人福利片在线播放| 国产欧美日韩精品丝袜高跟鞋| 美腿丝袜亚洲综合| 视频一区视频二区中文| 成人av手机在线观看| 国产一区二区三区久久久| 日韩影院精彩在线| 欧美日韩精品一区二区三区蜜桃| 色国产精品一区在线观看| 欧美久久成人| julia中文字幕一区二区99在线| 97婷婷涩涩精品一区| 欧美大学生性色视频| aa级大片欧美| 国产精品91xxx| caopen在线视频| 高清久久精品| 激情欧美一区二区三区中文字幕| 亚洲国产综合自拍| 成人午夜短视频| 亚洲永久网站| 色婷婷久久一区二区三区麻豆| 东方欧美亚洲色图在线| 一区二区三区在线免费观看| 久久人人视频| 九义人在线观看完整免费版电视剧| 欧美精品大片| 国产精品久久久久久久久免费樱桃| 国产毛片精品| 欧美性受xxx| 中文字幕人成不卡一区| 亚洲成人a**站| 国产精品sm| 日韩久久99| 亚洲欧洲国产精品久久| 综合视频在线| 另类视频一区二区三区| 亚洲www永久成人夜色| 国产精品资源在线| 中文字幕亚洲欧美一区二区三区| 美女福利视频一区| 深夜福利成人| 精品免费av| 欧美人体一区二区三区| 韩国v欧美v日本v亚洲| 欧美精品video| av色综合久久天堂av综合| 日韩成人高清| 先锋影音国产一区| 久久久精品国产**网站| 欧美特黄aaaaaaaa大片| 国产经典自拍视频在线观看| 日韩成人伦理电影在线观看| 欧美亚洲禁片免费| 国产精品亚洲第一区| 亚洲一区二区视频在线| 亚洲人成网77777色在线播放| 欧美色综合天天久久综合精品| 日产精品一区| 麻豆国产精品777777在线| 亚洲成人动漫在线观看| 国产又色又爽又黄刺激在线视频| 黄av在线免费观看| 亚洲国产成人av在线| 欧美巨乳在线观看| www555久久| 国产精品极品尤物在线观看| 精品一区二区三区自拍图片区| 国产精品一区二| 奇米色777欧美一区二区| 久久艹在线视频| 一区二区三区在线高清| 亚洲自拍偷拍网| av在线日韩| 精品国产鲁一鲁一区二区张丽| 成人日韩在线观看| 久久69av| 视频一区二区三区在线观看| 成人短片线上看| 欧美激情久久久久| 美女性感视频久久| 亚洲自啪免费| 欧洲亚洲视频| 欧美福利一区二区| 国产日韩av在线播放| 免费看日本一区二区| 欧美性猛交xxxx|