述職范文|分式方程課件(模板13篇)
發表時間:2022-10-22分式方程課件(模板13篇)。
? 分式方程課件 ?
分式方程的解法①去分母方程兩邊同時乘以最簡公分母(最簡公分母:①系數取最小公倍數②出現的字母取最高次冪③出現的因式取最高次冪),將分式方程化為整式方程;若遇到互為相反數時,不要忘了改變符號.②按解整式方程的步驟移項,若有括號應去括號,注意變號,合并同類項,把系數化為1,求出未知數的值.③驗根求出未知數的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根.驗根時把整式方程的根代入最簡公分母,如果最簡公分母等于0,這個根就是增根.否則這個根就是原分式方程的根.若解出的根是增根,則原方程無解.如果分式本身約分了,也要帶進去檢驗.在列分式方程解應用題時,不僅要檢驗所得解的是否滿足方程式,還要檢驗是否符合題意.一般的,解分式方程時,去分母后所得整式方程的解有可能使原方程中分母為零,因此要將整式方程的解代入最簡公分母,如果最簡公分母的值不為零,則是方程的解.★注意(1)注意去分母時,不要漏乘整式項.(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的解.(3)増根使最簡分母等于0.歸納解分式方程的基本思路是將分式方程化為整式方程,具體做法是“去分母”,即方程兩邊同乘最簡公分母,這也是解分式方程的一般思路和做法.
? 分式方程課件 ?
2.對于任意一個分式,當 不為0時,分式有意義.
3.當分式的 為0,而 不為0時,分式的值為0.
二、基礎訓練:
3.下列各式,,,,,0中,是分式的有___________;是整式的有___________;
4.當 時,分式無意義.
(2)當取何值時,分式有意義?
A. B. C. D.
3.當______時,分式無意義.
4.當_______時,分式的值為零.
A.0 B.1 C. D.
(1)的值是零; (2)分式無意義.
7.下列分式,當取何值時有意義.
(1); (2).
? 分式方程課件 ?
教學目標
(一)知識與技能
理解分式方程與整式方程的區別,并掌握解分式方程的一般步驟。
(二)過程與方法
通過具體例子,讓學生獨立探索方程的解法,經歷和體會解分式方程的必要步驟,使學生進一步了解數學思想中的"轉化"思想。
(三)情感、態度與價值觀
培養學生自覺反思求解過程和自覺檢驗的良好習慣,培養嚴謹的治學態度。
教學重點:探索如何將分式方程轉化為整式方程并掌握解分式方程的一般步驟
教學難點 :探索分式方程產生增根的原因。
教學過程
一.創設情境,導入新課:
為幫助四川受災的人們重建家園,某中學號召同學們自愿捐款。已知第一次捐款總額為20xx元,第二次捐款總額為2150元,第二次捐款人數比第一次多15人,而且兩次人均捐款額恰好相等。
根據以上信息你能分別求出兩次捐款的人數嗎?
若設第一次捐款人數為X人,第二次捐款人數為 ( ) 人。
根據相等關系列方程為( )。
這個方程的分母中含有未知數,與以前學過的方程不同,這就是我們這節課要學習的分式方程。(板書課題)
二.新課學習:
(一).分式方程的定義:
分母中含有未知數的方程叫做分式方程
以前學過的像一元一次方程、二元一次方程等這類分母中不含有未知數的方程叫整式方程
反饋練習
(二).探索分式方程的解法
1.回顧整式方程的解法
解方程(解上面練習中的第三題)
師生共同回顧:解整式方程的步驟
(1)去分母,(2)去括號, (3)移項, (4)合并同類項, (5)化未知x的系數為1
2.如何解分式方程呢?
(學生嘗試完成,然后集體補充步驟)
解方程:20xx∕X=2150/X+15
解:方程兩邊同時乘以X(X+15),得
20xx(X+15)=2150X
解這個整式方程,得
x=200
則200+15=215
檢驗:把x=200代入原方程,
因為左邊=10 右邊=10
所以左邊=右邊
所以x=200是原方程的解。
3.歸納解分式方程的步驟
一是去分母,二是解整式方程,三是檢驗
4.例題解方程:
(生獨立完成,師指導)
分式方程的增根:不適合原方程的整式方程的根,叫原方程的增根.
師:解分式方程必須進行檢驗!
[師]怎樣檢驗較簡單呢?還需要將整式方程的根分別代入原方程的左、右兩邊嗎?
[生]最簡單的檢驗方法是:把整式方程的根代入最簡公分母.若使最簡公分母為零,則是原方程的增根;若使最簡公分母不為零,則是原方程的根.是增根,必舍去。
三.應用升華
四.小結
本節課我們學會了解分式方程,明白了解分式方程的三個步驟缺一不可,我明白了分式方程轉化為整式方程為什么會產生增根。
五.布置作業:
本小節課時作業
教學反思
1. 解分式方程時,如果分母是多項式時,應先寫出將分母進行因式分解的步驟來,從而讓學生準確無誤地找出最簡公分母
2.對分式方程可能產生增根的原因,要啟發學生認真思考和討論。
? 分式方程課件 ?
分式初中數學中重要的一章,在中考中占有一定的比重。學生已基本掌握了分式的有關知識(分式的概念、分式的基本性質、約分、通分、分式的運算、分式方程和能化為一元一次方程的分式方程的應用題等),并且獲得了學習代數知識的常用方法,感受到代數學習的實際應用價值。
一、本章可以讓學生通過觀察、類比、猜想、嘗試等活動學習分式的運算法則,發展他們的合情推理能力,所以復習時重點應放在對法則的探索過程上。一定要讓學生充分活動起來。在觀察、類比、猜想、嘗試當一系列思想活動中發現法則、理解法則、應用法則,同時還要關注學生對算理的理解,以培養學生的代數表達能力、運算能力和有理的思考問題能力??墒俏以谥R的傳授上并沒有注重探索、類比法則,而重在對分式四則運算法則的運用和分式方程的運用上,沒有抓住教學的關鍵環節恰當的選擇教學方法。今后要避免類似事情的發生。
二、復習中的重建
分式的運算(加、減、乘、除、乘方和混合運算)是代數恒等變形的基礎之一,但是不能盲目的加大運算量與題目的難度,重點應放在對運算過程推理的理解上,把分式的基本性質做到靈活運用。
再則,對課本上關于分式的具體問題一定要重視,并關注學生在這些具體活動中的投入程度,看他們能否積極主動地參與,其次看學生在這些活動中的思維發展水平—-—能否獨立思考?能否用數學語言表達自己的想法?能否反思自己的思維過程?進而發現新的問題,培養學生解決問題的能力!提高學生的學習興趣!
? 分式方程課件 ?
各位領導、各位老師:
大家好!
今天我說課的內容是人教八年級數學下冊第十六章《分式》第三節第一課時——分式方程.下面我分說教材、說學情、說教法學法、教學過程、教學效果預想五個方面談談我對本節課的看法.
一、說教材
1、教材的地位和作用
可化為一元一次方程的分式方程是在學生已熟練地掌握了一元一次方程的解法、分式四則運算等有關知識的基礎進行學習的.它既可看成是分式有關知識在解方程中的應用;也可看成是進一步學習研究其它分式方程的基礎(可化為一元二次方程的分式方程),因此它有著承前啟后的作用.同時學習了分式方程后也為解決實際問題拓寬了路子.
2、教學目標:
根據教材的地位、作用,考慮到學生已有的認知結構心理特征,本著學習知識,培養能力,進行教育,養成好的學習習慣的原則,我確定了如下教學目標:
知識和技能目標:
①、理解分式方程的概念、會解分式方程.
②、掌握解分式方程的驗根方法.
過程和方法目標:
經歷“實際問題—分式方程—整式方程”的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想,培養學生的應用意識.
情感、態度和價值觀目標:
①、培養學生樂于探究、合作學習的好習慣.
②、體會探索發現的樂趣,增強學習數學的自信心.
3、教學重點、教學難點
本著新課程標準,在鉆研教材的基礎上,我確定本節課的重點、難點為:
教學重點:分式方程的解法
教學難點:解分式方程過程中產生增根的原因及如何驗根.
二、學情分析
學生是在前面學習分式的意義、分式的混合運算和熟練解一元一次方程的基礎上學習本節內容的,同時八年級學生具有豐富的想象力、好奇心和好勝心理.容易開發他們的主觀能動性.但對于解分式方程過程中會出現增根,部分同學理解起來較為困難,因此在教學過程中應重點強調如何把分式方程轉化為整式方程和解分式方程過程中產生增根的原因及如何驗根.
三、教法學法
1、說教法
常言道:教必有法,教無定法.本節內容從實際問題出發引了出分式方程的概念,介紹分式方程的求解方法.再加上數學學科的特點,所以本節課充分利用“教學案”、采用了啟發式、引導式教學方法.特別注重"精講多練 ",真正體現以學生為主體.上新課時采用了啟發、引導式的同時,針對學生的回答所出現的一些問題給出及時的糾正,在上課做練習時,除了讓盡可能多的學生板演以外,自己還在下面及時的發現學生所出現的問題,比較典型的則全班講評,個別小問題,個別解決.
2、說學法
“授人以魚,不如授人以漁”.本節課里我主要指導學生采用了自主探索、合作交流、自我反思的學習方法,使學生積極主動得參與到教學過程,通過合作交流,激發學生的學習興趣,體現探索的快樂,使學生的主體地位得到充分的發揮.
四、說教學過程
1、回顧舊知
師生在和諧的氣憤之下共同回憶以下內容:
(1)大家還記得我們以前學過什么方程嗎?
(2)你會解一元一次方程嗎?例如:
(3)解二元一次方程組的主要思想是什么?
設計意圖:通過以上三個問題讓學生投入到方程的世界,也為學生能夠自己通過知識的遷移突破本節課的重點做一個鋪墊.
2、創設情景、導入新課
出示引言中的問題:
一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用的時間,與以最大航速逆流航行60千米所用的時間相等,江水的流速為多少?
師生活動:教師提出問題,學生依照第26頁的分析,完成填空,根據“兩次航行所用時間相等”這一等量關系列出方程.
設計意圖:先通過本章引言中的一個行程問題,引導學生從分析入手,列出含未知數的式子表示有關的量,并進一步根據相等關系列出方程,為探索分式方程及分式方程的解法作準備.
3、小組合作、探究新知
(1)方程 與以前所學的方程有何不同?什么叫分式方程?
師生活動:教師提出問題,學生思考、議論后在全班交流.
學生歸納出:該方程的特征是分母中含有未知數.
設計意圖:通過觀察、比較,培養學生的觀察問題和語言表達能力.
(2)如何解分式方程?
師生活動:鼓勵學生尋求解決問題的辦法,引導學生將分式方程轉化為整式方程,學生在解剛才的一元一次方程的基礎上自然會想到“去分母”來實現這種轉變,求出方程的解,并要求學生驗根.
設計意圖:怎樣解分式方程,這是本節的核心問題,也是本節課的重點,本次活動中用“轉化”和“類比”的思想,把待解決的問題,通過轉化,化歸到已經解決或比較容易的問題中去,最終使問題得到解決.從而突破本節課的重點.
(3)解分式方程 :
(4)思考:
①上面兩個方程中,為什么第一個分式方程去分母后所得整式方程的解就是它的解,而第二個不是呢?
②解分式方程時,去分母后所得整式方程的解是原分式方程的解,也可能不是,這是為什么呢?
③如何進行檢驗呢?有更簡單的方法嗎?
師生活動:學生獨立解決問題,然后提出自己的看法在小組討論,在學生討論期間,教師應參與到學生的數學活動中,鼓勵學生勇于探索、實踐,解釋產生這一現象的原因,并懂得在解分式方程時一定要進行驗根.
設計意圖:這一環節是本節課的難點,此時我設置了一個問題串,降低難度,并且此環節的內容可以說是適度.考慮學生的認知水平,關于增根的過多知識點我大膽舍去,只把目標定于了解解分式方程產生增根的原因和掌握驗根的方法,再者通過引導學生進行比較、探究,并進行充分的討論,最后統一認識,用分式的意義及分式的基本性質解釋分式方程可能無解的原因,以及驗根的方法,從而突破本節課的難點.
(4)精析例題
出示P28例題
師生活動:教師出示題目,學生獨立完成,指名2名學生板演.
設計意圖:①例題的作用可以培養學生學以致用的能力、嚴格的解題規范格式,從而養成良好的學習習慣.
②評價時采用生生評價的方式可以提高學生學習的興趣,活躍課堂氣氛,培養學生嚴謹的數學思維習慣.
(5)歸納總結解分式方程的步驟
師生活動:學生總結,老師補充點評
設計意圖:讓學生明確解題步驟,有一個清晰的解題思路,并強調轉化思想.
4、練習鞏固、深化提高
P29的練習
師生活動:教師出示題目,學生獨立完成,指4名學生板演,教師強調步驟,特別是檢驗.
設計意圖:及時鞏固所學知識,了解學生學習效果,增強學生應用知識的能力.
5、總結反思、納入系統
(1)通過本節課的學習,
你學會了哪些知識?
(2)通過本節課的學習,
你想告訴同學們注意什么?
(3)通過本節課的學習,
你獲得了哪些學習數學的方法?
師生活動:學生個體小結,小組歸納,集體補充.
設計意圖:①讓學生以反思的形式回憶本節的學習內容與方法,更有利于學生加深對所學知識的印象,有利于培養學生養成良好的數學學習習慣.
②注重學生間的相互合作,培養學生的合作意識、競爭意識,養成“愛提問、敢質疑、富聯想、善總結”的好習慣.
6、作業布置
(1)、必做題:P32第1題
(2)、選做題:P32第2題.
設計意圖:考慮學生的個別差異,分層次布置作業,讓基礎差的學生能夠吃飽,基礎好的學生吃好,使每位學生都感到學有所獲.
7、板書設計
16.3分式方程 三、創設情境 解分式方程二 例一
一、回顧舊知 四、探究新知
二、分式方程概念 解分式方程一 歸納 例二
設計意圖:清晰明朗,利于兩個分式方程的對比從而分析出現增根的原因.
五、效果預想
數學課程標準指出:學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,而動手實踐、自主探究與合作交流是學生學習數學的重要方式.本著這一理念,在本課的教學過程中,我嚴格遵循由感性到理性,將數學知識始終與現實生活中學生熟悉的實際問題相結合,不斷提高他們應用數學方法分析問題、解決問題的能力.在重視課本基礎知識的基礎上,適當進行拓展延伸,培養學生的創新意識,同時根據新課程標準的評價理念,在教學過程中,不僅能夠注重學生的參與意識,而且注重學生對待學習的態度是否積極.課堂中也盡量給學生更多的空間、更多展示自我的機會,讓學生在和諧的氛圍中認識自我、找到自信、體驗成功的樂趣.使學生的主體地位得到充分的體現,使教學過程成為一個在發現在創造的認知過程.
以上就是我對本節課的設想,請各位老師提出寶貴意見.
? 分式方程課件 ?
一、教學內容分析:
本節“分式方程”是人教版八年級下冊第16章第3節的內容,是繼一元一次方程,二元一次方程組之后,初中階段所講授的又能一種方程的解法。本節課是在繼分式的內容及分式的四則混合運算之后所講述的一個內容,其實際上就是分式與方程的綜合。因此本節課可以看作是一個綜合課,同時分式方程的解法也是初中階段的一個重點內容,要求學生必須掌握。
二、學情分析:
在學習本章之前,學生已經分兩次學習過整式方程(一元一次方程、二元一次方程組),他們對于整式方程特別是一元一次方程的解法及其基本思路(使方程逐步化為x=a 的形式)已經比較熟悉,而分式方程的未知數在分母中,它的解法比以前學過的方程復雜,需通過轉化思想,化分式方程為整式方程。
三、教學目標:
1、明確什么是分式方程?會區分整式方程與分式方程。
2、會解可化為一元一次方程的分式方程。
3、知道分式方程產生增根的原因,并學會如何驗根。
四、教學重點:
分式方程的解法。
教學難點:理解分式方程可能產生增根的原因。
五、教學流程
1、憶一憶
(1)什么叫方程?什么叫方程的解?
(2)什么叫分式?
(3)結合具體例子說出解一元一次方程的步驟。
設計意圖:
讓學生由舊知識的回憶自然引出新知識便于學生理解接受。
2x-(x-1)/3=6 3x/4+(2x+1)/3=0
2、猜一猜
板書課題“分式方程”,讓學生猜一猜其概念,結合分式和方程的特點學生易得出:分母中含有未知數的方程叫分式方程。
設計意圖:
采用這種形式引入今天的話題,讓學生覺得不是在上數學,而象是在拉家常,讓學生沒有負擔,另外,學生在前面的回憶的基礎上很容易猜出來分式方程的概念。這樣使學生感受到數學的簡單,從而樹立學好數學的信心。
3、辨一辨
判斷下列方程是不是分式方程,并說出為什么?
1/(x-2)=3/x x(x-1)/x=-1 (3-x)/=x/2
2x+(x-1)/5=10 3/x=2/(x-3) (2x+1)/x+3x=1
指出:
分式方程與整式方程的區別(分母中含不含未知數)
設計意圖:
學生說出來了分式方程的概念還遠遠不夠,通過這道題使學生更進一步的鞏固分式方程的概念。 (x-1)/x=-1這個方程可能學生會有爭議,讓學生說出自己的意見后,老師可總結,在判斷方是否為分式方程時,不能化簡,以形式為準。
4、想一想
提出該如何解方程呢?讓學生討論后得出:
通過去分母,方程兩邊同乘以各分母的最簡公分母,回憶最簡公分母的定義。
設計意圖:
讓學生自己去想該如何解,然后老師加以指導,這樣會使學生感覺到自己真正是課堂的主人,從而全身心地投入學習。
5、試一試
(1)80/(x+5) (2)1/(x-5)=10/x.x-25
方程兩邊同乘以 x(x+5)得: 方程兩邊同乘以(x+5)(x-5)得:
80x=60(x+5) x+5=10
80x=60x+300 x=5
20x=300
x=15
提醒學生檢驗,對比兩個方程發現問題。
設計意圖:
通過提醒學生檢驗,讓學生自己發現問題。從而自然引出話題。
6、議一議
分式方程為什么會產生增根?(兩邊都乘以了一個零因式,但這個根是整式方程的解)所以分式方程的檢驗代入最簡公分母即可,提出,分式方程能不檢驗嗎?通過討論使學生得出分式方程必須檢驗,因為分式方程的檢驗是為了看是不是增根,而不是檢驗對錯,所以必須檢驗。
7、說一說
老師幫忙總結出解分式方程的一般步驟:
1、程兩邊都乘最簡公分母,約去分母,化為整式方程。
2、解這個整式方程。
3、把整式方程的根代入最簡公分母,看它的值是否為零,使最簡公分母為零的值是原方程的增根,必須舍去。
可簡單記作:
一化二解三檢驗。
設計意圖:
讓學生對所學知識上升到一個理論高度。
8、做一做
解方程:
(1)2/(x-3)=3/x (2)x/(x-1)-1=3/(x-1)(x+2)
體驗解分式方程的完整過程。
? 分式方程課件 ?
1.使學生掌握的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根。
2.通過本節課的教學,向學生滲透“轉化”的數學思想方法;
3.通過本節的教學,繼續向學生滲透事物是相互聯系及相互轉化的辨證唯物主義觀點。
2.教學難點:解分式方程,學生不容易理解為什么必須進行檢驗.
3.教學疑點:學生容易忽視對分式方程的解進行檢驗通過對分式方程的解的剖析,進一步使學生認識解分式方程必須進行檢驗的重要性.
4.解決辦法:(l)分式方程的解法順序是:先特殊、后一般,即能用換元法的方程應盡量用換元法解.(2)無論用去分母法解,還是換元法解分式方程,都必須進行驗根,驗根是解分式方程必不可少的一個重要步驟.(3)方程的增根具備兩個特點,①它是由分式方程所轉化成的整式方程的根②它能使原分式方程的公分母為0。
(1)什么叫做分式方程?解可化為一元一次方程的分式方程的方法與步驟是什么?
(2)解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?
(3)解方程,并由此方程說明解方程過程當中產生增根的原因。
通過(1)、(2)、(3)的準備,可直接點出本節的內容:的解法相同。
在教師點出本節內容的處理方法與以前所學的知識完全類同后,讓全體學生對照前面復習過的分式方程的解,來進一步加深對“類比”法的理解,以便學生全面地參與到教學活動中去,全面提高教學質量。
在前面的基礎上,為了加深學生對新知識的理解,教師與學生共同分析解決例題,以提高學生分析問題和解決問題的能力。
例1 解方程。
分析 對于此方程的解法,不是教師講如何如何解,而是讓學生對已有知識的回憶,使用原來的方法,去通過試的手段來解決,在學生敘述過程當中,發現問題并及時糾正。
∴ 原方程的根是。
雖然,此種類型的方程在初二上學期已學習過,但由于相隔時間比較長,所以有一些學
生容易犯的類型錯誤應加以強調,如在第一步中.需強調方程兩邊同時乘以最簡公分母.另
外,在把分式方程轉化為整式方程后,所得的一元二次方程有兩個相等的實數根,由于是解
分式方程,所以在下結論時,應強調取一即可,這一點,教師應給以強調.
分析:解此方程的關鍵是如何將分式方程轉化為整式方程,而轉化為整式方程的關鍵是
正確地確定出方程中各分母的`最簡公分母,由于此方程中的分母并非均按的降冪排列,所
以將方程的分母作一轉化,化為按字母終X進行降暴排列,并對可進行分解的分母進行分解,從而確定出最簡公分母.
師生共同解決例1、例2后,教師引導學生與已學過的知識進行比較.
例3 解方程。
分析:此題也可像前面例l、例2一樣通過去分母解決,學生可以試,但由于轉化后為一元四次方程,解起來難度很大,因此應尋求簡便方式,通過引導學生仔細觀察發現,方程中含有未知數的部分 和互為倒數,由此可設 ,則可通過換元法來解題,通過求出y后,再求原方程的未知數的值.
,
檢驗:把分別代入原方程的分母,各分母均不等于0。
,。
此題在解題過程當中,經過兩次“轉化”,所以在檢驗中,把所得的未知數的值代入原方程中的分母進行檢驗。
對于小結,教師應引導學生做出。
本節內容的小結應從所學習的知識內容、所學知識采用了什么數學思想及教學方法兩方面進行。
本節我們通過類比的方法,在已有的解可化為一元一次方程的分式方程的基礎上,學習了的解法,在具體方程的解法上,適用了“轉化”與“換元”的基本數學思想與基本數學方法。
此小結的目的,使學生能利用“類比”的方法,使學過的知識系統化、網絡化,形成認知結構,便于學生掌握。
1.教材P50中A1、2、3。
解方程:
分析:若去分母,則會變為高次方程,這樣解起來,比較繁,注意到分母中都有,可用換元法降次
有農藥一桶,倒出8升后,用水補滿,然后又倒出4升,再用水補滿,此時農藥與水的比為18:7,求桶的容積.
解:設桶的容積為 升,第一次用水補滿后,濃度為 ,第二次倒出的農藥數為4. 升,兩次共倒出的農藥總量(8+4· )占原來農藥 ,故
? 分式方程課件 ?
1、在復習中引入新的教學重點,回顧以往所學習的方程知識,采用讓學生自己說出幾個一元一次方程并求解的方法,充分發揮了學生的主動性,活躍了課堂氣氛。為本節課開了一個好頭。
2、利用學生的一個求不出解的一元一次方程(x-1)/3+1=(2x-3)/6,借機讓學生明確可化為ax=b(a不等于0)的方程才是一元一次方程。自然巧妙的讓學生為后面的學習做好了鋪墊。也吸引了學生的注意力,讓學生覺得有趣而一步一步的聽下去。
3、通過設問,活動,讓學生親自感知,體驗,在感知和體驗中進行質疑、思考與探究,通過質疑、思考與探索發現新知,激發了學生的參與熱情,培養了學生的探索意識,使學生在喜悅的氣氛下自主的學習。
通過本節課,也使我領悟到,在今后的教學中,應做到以下幾點:
1、變枯燥為有趣同,讓學生成為整個教學的重點。
興趣是最好的老師,只有充分調動學生的學習熱情,才能使學生真正參與學習中來,才能主動地去學習。當然,這需要老師多下功夫,多聯系實際,多設計情景,讓學生覺得不是在上課,而是在演電視劇,而他就是其中的主人公。
2、變復雜為簡單。
越簡單學生就越想學,越會做學生就越想做,簡單之中蘊含著大道理,簡單的做多了,熟練了,才可能去做復雜的。當然這需要形式多樣,而不能單一。
3、給學生足夠的思考空間,不要急于給出答案,就是學生說錯了,也不要把學生硬拉過來,而應該給學生留下思考的空間。
? 分式方程課件 ?
教材分析
本節內容是在學生掌握了一元一次方程的解法和分式四則運算的基礎上進行的,為后面學習可化為一元一次方程的分式方程打下基礎。通過經歷實際問題→列分式方程→探究解分式方程的過程,體會分式方程是一種有效描述現實世界的模型,進一步發展學生分析問題和解決問題的能力,培養應用意識,滲透類比轉化思想。
學情分析
《課標》指出:“數學教學是數學活動的教學,是師生之間、學生之間交往互動與共同發展的過程。”從教師的教學角度上看:教師是進行數學活動的組織者、引領者,是教學活動的主導;從學生的學習角度上看:數學活動是學生經歷數學化過程的活動,是學生自己建構數學知識的活動,是學習活動的主體;從師生的合作角度上看:數學活動過程是教師和學生之間互動的過程,是師生共同發展的過程,即要促進學生發展,也要促進教師成長。教師作為教學主導,學生是主體作用
我們這學生基礎知識較扎實,學生喜歡上數學課,學習數學的興趣較濃,具有一定探索解決問題的能力,采用的學習方法:1、類比學習的方法。通過與分數的乘除法運算類比得到分式方程的解法。2、探究合作學習。學生互助下進行學習。
教學目標
知識技能:了解分式方程定義,理解解分式方程的一般解法和分式方程可能產生增根的原因,掌握解分式方程驗根的方法。
過程方法:通過經歷實際問題→列分式方程→探究解分式方程的過程,體會分式方程是一種有效描述現實世界的模型,發展學生分析問題解決問題的能力,培養應用意識,滲透轉化思想。
情感態度:強化用數學的意識,增進同學之間的配合,體驗在數學活動中運用知識解決問題的成就感,樹立學好數學的自信心。
教學重點和難點
教學重點:解分式方程的基本思路和解法。
教學難點:理解分式方程可能產生增根的原因。
? 分式方程課件 ?
一、要創造性地使用教材
教材只是為教師提供最基本的教學素材,教師完全可以根據學生的實際情況進行調整。本節教材中的引例分式方程較復雜,學生直接探索它的解法有些困難。我是從簡單的整式方程引出分式方程后,再引導學生探究它的解法。這樣很輕松地找到新知識的切入點:用等式性質去分母,轉化為整式方程再求解。因此,學生學的效果也較好。
二、相信學生并為學生提供充分展示自己的機會
學生已經學習了一元一次去探究分式方程的解法及分式方程檢驗的'必要性。
三、注意改進的地方
講例題時,先講一個產生增根的較好,這樣便于說明分式方程有時無解的原因,也便于講清分式方程檢驗的必要性,也是解分式方程與整式方程最大的區別所在,從而再強調解分式方程必須檢驗,不能省略不寫這一步。
? 分式方程課件 ?
《分式方程教學》教學設計
《分式方程教學》是在學生掌握了一元一次方程的解法及分式四則混合運算的基礎上展開的,既是前一節的深化,同時解決了解方程的問題,又為以后的教學——“應用”打下了良好的基礎,因而在教材中具有不可忽略的地位與作用。為了更好的將教與學有機結合,提高課堂教學效率,數學網小編與大家分享《分式方程教學》教學設計,希望大家在學習中得到提高。
一、教學內容分析:本節“分式方程”是人教版八年級下冊第16章第3節的內容,是繼一元一次方程,二元一次方程組之后,初中階段所講授的又能一種方程的解法。本節課是在繼分式的內容及分式的四則混合運算之后所講述的一個內容,其實際上就是分式與方程的綜合。因此本節課可以看作是一個綜合課,同時分式方程的解法也是初中階段的一個重點內容,要求學生必須掌握。
二、學情分析:在學習本章之前,學生已經分兩次學習過整式方程(一元一次方程、二元一次方程組),他們對于整式方程特別是一元一次方程的解法及其基本思路(使方程逐步化為x=a 的形式)已經比較熟悉,而分式方程的未知數在分母中,它的解法比以前學過的方程復雜,需通過轉化思想,化分式方程為整式方程。
三、教學目標:
1、明確什么是分式方程?會區分整式方程與分式方程。
2、會解可化為一元一次方程的分式方程。
3、知道分式方程產生增根的原因,并學會如何驗根。
四、教學重點:分式方程的解法。
教學難點:理解分式方程可能產生增根的原因。
五、教學流程
1、憶一憶
(1)什么叫方程?什么叫方程的解?
(2)什么叫分式?
(3)結合具體例子說出解一元一次方程的步驟。
設計意圖:讓學生由舊知識的回憶自然引出新知識便于學生理解接受。
2x-(x-1)/3=6 3x/4+(2x+1)/3=0
2、猜一猜
板書課題“分式方程”,讓學生猜一猜其概念,結合分式和方程的特點學生易得出:分母中含有未知數的方程叫分式方程。
設計意圖:采用這種形式引入今天的話題,讓學生覺得不是在上數學,而象是在拉家常,讓學生沒有負擔,另外,學生在前面的回憶的基礎上很容易猜出來分式方程的概念。這樣使學生感受到數學的簡單,從而樹立學好數學的信心。
3、辨一辨
判斷下列方程是不是分式方程,并說出為什么?
1/(x-2)=3/x x(x-1)/x=-1 (3-x)/=x/2
2x+(x-1)/5=10 3/x=2/(x-3) (2x+1)/x+3x=1
指出:分式方程與整式方程的區別(分母中含不含未知數)
設計意圖:學生說出來了分式方程的概念還遠遠不夠,通過這道題使學生更進一步的鞏固分式方程的概念。 (x-1)/x=-1這個方程可能學生會有爭議,讓學生說出自己的意見后,老師可總結,在判斷方是否為分式方程時,不能化簡,以形式為準。
4、想一想
提出該如何解方程呢?讓學生討論后得出:
通過去分母,方程兩邊同乘以各分母的最簡公分母,回憶最簡公分母的定義。
設計意圖:讓學生自己去想該如何解,然后老師加以指導,這樣會使學生感覺到自己真正是課堂的主人,從而全身心地投入學習。
5、試一試
(1)80/(x+5) (2)1/(x-5)=10/
方程兩邊同乘以 x(x+5)得: 方程兩邊同乘以(x+5)(x-5)得:
80x=60(x+5) x+5=10
80x=60x+300 x=5
20x=300
x=15
提醒學生檢驗,對比兩個方程發現問題。
設計意圖:通過提醒學生檢驗,讓學生自己發現問題。從而自然引出話題。
6、議一議
分式方程為什么會產生增根?(兩邊都乘以了一個零因式,但這個根是整式方程的解)所以分式方程的檢驗代入最簡公分母即可,提出,分式方程能不檢驗嗎?通過討論使學生得出分式方程必須檢驗,因為分式方程的檢驗是為了看是不是增根,而不是檢驗對錯,所以必須檢驗。
7、說一說
老師幫忙總結出解分式方程的一般步驟:
1、程兩邊都乘最簡公分母,約去分母,化為整式方程。
2、解這個整式方程。
3、把整式方程的根代入最簡公分母,看它的值是否為零,使最簡公分母為零的值是原方程的增根,必須舍去。
可簡單記作:一化二解三檢驗。
設計意圖:讓學生對所學知識上升到一個理論高度。
8、做一做
解方程: (1)2/(x-3)=3/x (2)x/(x-1)-1=3/(x-1)(x+2)
體驗解分式方程的完整過程。
以上就是數學網小編分享《分式方程教學》教學設計的全部內容,教材中的每一個問題,每一個環節,都有教師依據學生學習的實際和教材的實際進行有針對性的設置,希望大家喜歡!
? 分式方程課件 ?
分式方程是初中二年級學生必學到的內容,也是在數學學習領域中的一個跨越, 本節課作為分式方程的第一節課,是在學生掌握了一元一次方程的解法及分式四則混合運算的基礎上展開的,既是前一節的深化,同時解決了解方程的問題,又為以后的教學――“應用”打下了良好的基礎,因而在教材中具有不可忽略的地位與作用,特別是對于學生來講,做好分式方程教學反思,可以更好的提高學生的學習效率。本節的教學重點是探索分式方程概念、會解可化為一元一次方程的分式方程、明確分式方程與整式方程的區別和聯系。教學難點是如何將分式方程轉化成整式方程。本節教材中的引例分式方程較復雜,學生直接探索它的解法有些困難。我是從簡單的整式方程引出分式方程后,再引導學生探究它的解法。這樣很輕松地找到新知識的切入點:用等式性質去分母,轉化為整式方程再求解。因此,學生學的效果也較好。教師在整個的分式方程教學反思中起著決定性的作用,一定要讓教師深刻的認識到這一點。從個人的工作經驗中做出如下分析:
第一點、更我思考的空間留給學生 問題不輕易直接告訴學生答案,而由學生通過動手動腦來獲得,從而發揮他們的主觀能動性。我主要在做題方法上指導,思維方式上點撥。改變那種讓學生在自己后面亦步亦趨的習慣,從而成為愛動腦、善動腦的學習者。
第二點、做好積極指導、引導的工作 保證學生掌握正確知識,和清晰的解題思路。由于學生總結的語言有限,我就把本節課的重點內容:解分式方程的思路,步驟,如何檢驗等都用多媒體形式給學生展示出來。還有在解分式方程過程中容易出現的問題都給學生做了強調。
第三點、對學生出現的錯誤問題,做出及時交流溝通 及時檢查糾正,保證學生認識到自己的錯誤并在第一時間內更正。學生在做題過程中我就在教室巡視,及時發現學生的錯誤,及時糾正。對于困難的學生也做個別輔導。
雖然在課堂上做了很多,但也存在許多不足的地方,這也是我在今后教學中應該注意的地方。第一,講例題時,先講一個產生增根的.較好,這樣便于說明分式方程有時無解的原因,也便于講清分式方程檢驗的必要性,也是解分式方程與整式方程最大的區別所在,從而再強調解分式方程必須檢驗,不能省略不寫這一步。第二,給學生的鼓勵不是很多。鼓勵可以讓學生有充分的自信心?!靶判氖浅晒Φ囊话搿?,“在今后的課堂教學中,應尊重其差異性,盡可能分層教學,評價標準多樣化。多鼓勵,少批評;多肯定,少指責。用動態的、發展的、積極的眼光看待每個學生,幫助他們樹立自信心。贊美的力量是巨大的,有時,一句贊美的話,可以改變人的一生。一句肯定的話、一個贊許的點頭、一張表示優勝的卡片,都是很好的鼓勵,會起到意想不到的良好結果。
? 分式方程課件 ?
《分式方程》是《分式》一章的重要內容,該課的教學是學生學好本章的關鍵。陳老師根據教材的內容和學生的實際,對課堂進行了精心設計,體現了教育教學改革的新理念,取得了良好的教學效果,他的教學特點如下:
流暢,既有對優秀教學方法的吸收,又有個人的創新、獨到之處,把教學過程變成學生對知識的探索過程,完全體現了新課程標準對教師的要求。
引導學生,課堂氣氛活躍。教師的課前準備充分,多媒體的`運用,使題型的訓練多樣化,課堂中教師的應變力強。
3、科學探究處理的比較好,陳老師首先引導學生得出分式方程的概念,然后引導學生探究得出分式方程的解法。然后由幫到放,由學生自己解方程,但陳老師沒能做到充分放手讓學生自己動手。在教學過程中深怕學生不懂。
系統的角度領悟教材,為學生以后的學習打下良好的認知基礎。
縱上所述,陳老師的這堂課比較成功,這是我對本節課的一些看法,不足之處請提出寶貴的意見。謝謝大家。
-
欲了解分式方程課件網的更多內容,可以訪問:分式方程課件
